Add ResNet_CIFAR

pull/2/head
yanglei 2020-07-09 14:19:15 +08:00 committed by yl-1993
parent e29882c8af
commit 9a661ef981
3 changed files with 152 additions and 2 deletions

View File

@ -4,6 +4,7 @@ from .mobilenet_v2 import MobileNetV2
from .mobilenet_v3 import MobileNetv3
from .regnet import RegNet
from .resnet import ResNet, ResNetV1d
from .resnet_cifar import ResNet_CIFAR
from .resnext import ResNeXt
from .seresnet import SEResNet
from .seresnext import SEResNeXt
@ -12,6 +13,6 @@ from .shufflenet_v2 import ShuffleNetV2
__all__ = [
'LeNet5', 'AlexNet', 'RegNet', 'ResNet', 'ResNeXt', 'ResNetV1d',
'ResNetV1d', 'SEResNet', 'SEResNeXt', 'ShuffleNetV1', 'ShuffleNetV2',
'MobileNetV2', 'MobileNetv3'
'ResNetV1d', 'ResNet_CIFAR', 'SEResNet', 'SEResNeXt', 'ShuffleNetV1',
'ShuffleNetV2', 'MobileNetV2', 'MobileNetv3'
]

View File

@ -0,0 +1,83 @@
import torch.nn as nn
from mmcv.cnn import build_conv_layer, build_norm_layer
from ..builder import BACKBONES
from .resnet import ResNet
@BACKBONES.register_module()
class ResNet_CIFAR(ResNet):
"""ResNet backbone for CIFAR.
Compared to standard ResNet, it uses `kernel_size=3` and `stride=1` in
conv1, and does not apply MaxPoolinng after stem. It has been proven to
be more efficient than standard ResNet in other public codebase, e.g.,
`https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py`.
Args:
depth (int): Network depth, from {18, 34, 50, 101, 152}.
in_channels (int): Number of input image channels. Default: 3.
stem_channels (int): Output channels of the stem layer. Default: 64.
base_channels (int): Middle channels of the first stage. Default: 64.
num_stages (int): Stages of the network. Default: 4.
strides (Sequence[int]): Strides of the first block of each stage.
Default: ``(1, 2, 2, 2)``.
dilations (Sequence[int]): Dilation of each stage.
Default: ``(1, 1, 1, 1)``.
out_indices (Sequence[int]): Output from which stages. If only one
stage is specified, a single tensor (feature map) is returned,
otherwise multiple stages are specified, a tuple of tensors will
be returned. Default: ``(3, )``.
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
layer is the 3x3 conv layer, otherwise the stride-two layer is
the first 1x1 conv layer.
deep_stem (bool): This network has specific designed stem, thus it is
asserted to be False.
avg_down (bool): Use AvgPool instead of stride conv when
downsampling in the bottleneck. Default: False.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters. Default: -1.
conv_cfg (dict | None): The config dict for conv layers. Default: None.
norm_cfg (dict): The config dict for norm layers.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
zero_init_residual (bool): Whether to use zero init for last norm layer
in resblocks to let them behave as identity. Default: True.
"""
def __init__(self, depth, deep_stem=False, **kwargs):
super(ResNet_CIFAR, self).__init__(
depth, deep_stem=deep_stem, **kwargs)
assert not self.deep_stem, 'ResNet_CIFAR do not support deep_stem'
def _make_stem_layer(self, in_channels, base_channels):
self.conv1 = build_conv_layer(
self.conv_cfg,
in_channels,
base_channels,
kernel_size=3,
stride=1,
padding=1,
bias=False)
self.norm1_name, norm1 = build_norm_layer(
self.norm_cfg, base_channels, postfix=1)
self.add_module(self.norm1_name, norm1)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv1(x)
x = self.norm1(x)
x = self.relu(x)
outs = []
for i, layer_name in enumerate(self.res_layers):
res_layer = getattr(self, layer_name)
x = res_layer(x)
if i in self.out_indices:
outs.append(x)
if len(outs) == 1:
return outs[0]
else:
return tuple(outs)

View File

@ -0,0 +1,66 @@
import pytest
import torch
from mmcv.utils.parrots_wrapper import _BatchNorm
from mmcls.models.backbones import ResNet_CIFAR
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_resnet_cifar():
# deep_stem must be False
with pytest.raises(AssertionError):
ResNet_CIFAR(depth=18, deep_stem=True)
# test the feature map size when depth is 18
model = ResNet_CIFAR(depth=18, out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 32, 32)
feat = model.conv1(imgs)
assert feat.shape == (1, 64, 32, 32)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == (1, 64, 32, 32)
assert feat[1].shape == (1, 128, 16, 16)
assert feat[2].shape == (1, 256, 8, 8)
assert feat[3].shape == (1, 512, 4, 4)
# test the feature map size when depth is 50
model = ResNet_CIFAR(depth=50, out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 32, 32)
feat = model.conv1(imgs)
assert feat.shape == (1, 64, 32, 32)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == (1, 256, 32, 32)
assert feat[1].shape == (1, 512, 16, 16)
assert feat[2].shape == (1, 1024, 8, 8)
assert feat[3].shape == (1, 2048, 4, 4)
# Test ResNet_CIFAR with first stage frozen
frozen_stages = 1
model = ResNet_CIFAR(depth=50, frozen_stages=frozen_stages)
model.init_weights()
model.train()
check_norm_state([model.norm1], False)
for param in model.conv1.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False