only keep one file to set swin transformer v2 model config

pull/1780/head
John 2023-09-05 22:16:07 +08:00
parent f4d372ba7d
commit 9b75ce0aa4
19 changed files with 56 additions and 141 deletions

View File

@ -4,7 +4,6 @@ from mmpretrain.models import (CrossEntropyLoss, GlobalAveragePooling,
ImageClassifier, LinearClsHead, SwinTransformer)
# model settings
# Only for evaluation
model = dict(
type=ImageClassifier,
backbone=dict(

View File

@ -1,29 +0,0 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.model import ConstantInit, TruncNormalInit
from mmpretrain.models import (CutMix, GlobalAveragePooling, ImageClassifier,
LabelSmoothLoss, LinearClsHead, Mixup,
SwinTransformerV2)
# model settings
model = dict(
type=ImageClassifier,
backbone=dict(
type=SwinTransformerV2, arch='base', img_size=256, drop_path_rate=0.5),
neck=dict(type=GlobalAveragePooling),
head=dict(
type=LinearClsHead,
num_classes=1000,
in_channels=1024,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(type=LabelSmoothLoss, label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(
augments=[dict(type=Mixup, alpha=0.8),
dict(type=CutMix, alpha=1.0)]),
)

View File

@ -1,20 +0,0 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmpretrain.models import (CrossEntropyLoss, GlobalAveragePooling,
ImageClassifier, LinearClsHead,
SwinTransformerV2)
# model settings
# Only for evaluation
model = dict(
type=ImageClassifier,
backbone=dict(
type=SwinTransformerV2, arch='large', img_size=256,
drop_path_rate=0.2),
neck=dict(type=GlobalAveragePooling),
head=dict(
type=LinearClsHead,
num_classes=1000,
in_channels=1536,
loss=dict(type=CrossEntropyLoss, loss_weight=1.0),
topk=(1, 5)))

View File

@ -1,20 +0,0 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmpretrain.models import (CrossEntropyLoss, GlobalAveragePooling,
ImageClassifier, LinearClsHead,
SwinTransformerV2)
# model settings
# Only for evaluation
model = dict(
type=ImageClassifier,
backbone=dict(
type=SwinTransformerV2, arch='large', img_size=384,
drop_path_rate=0.2),
neck=dict(type=GlobalAveragePooling),
head=dict(
type=LinearClsHead,
num_classes=1000,
in_channels=1536,
loss=dict(type=CrossEntropyLoss, loss_weight=1.0),
topk=(1, 5)))

View File

@ -1,30 +0,0 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.model import ConstantInit, TruncNormalInit
from mmpretrain.models import (CutMix, GlobalAveragePooling, ImageClassifier,
LabelSmoothLoss, LinearClsHead, Mixup,
SwinTransformerV2)
# model settings
model = dict(
type=ImageClassifier,
backbone=dict(
type=SwinTransformerV2, arch='small', img_size=256,
drop_path_rate=0.3),
neck=dict(type=GlobalAveragePooling),
head=dict(
type=LinearClsHead,
num_classes=1000,
in_channels=768,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(type=LabelSmoothLoss, label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(
augments=[dict(type=Mixup, alpha=0.8),
dict(type=CutMix, alpha=1.0)]),
)

View File

@ -1,29 +0,0 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.model import ConstantInit, TruncNormalInit
from mmpretrain.models import (CutMix, GlobalAveragePooling, ImageClassifier,
LabelSmoothLoss, LinearClsHead, Mixup,
SwinTransformerV2)
# model settings
model = dict(
type=ImageClassifier,
backbone=dict(
type=SwinTransformerV2, arch='tiny', img_size=256, drop_path_rate=0.2),
neck=dict(type=GlobalAveragePooling),
head=dict(
type=LinearClsHead,
num_classes=1000,
in_channels=768,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(type=LabelSmoothLoss, label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(
augments=[dict(type=Mixup, alpha=0.8),
dict(type=CutMix, alpha=1.0)]),
)

View File

@ -5,7 +5,7 @@ from mmengine.config import read_base
with read_base():
from .._base_.datasets.imagenet21k_bs128 import *
from .._base_.default_runtime import *
from .._base_.models.swin_transformer_v2.base_256 import *
from .._base_.models.swin_transformer_v2_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
# model settings

View File

@ -5,7 +5,7 @@ from mmengine.config import read_base
with read_base():
from .._base_.datasets.imagenet_bs64_swin_256 import *
from .._base_.default_runtime import *
from .._base_.models.swin_transformer_v2.base_256 import *
from .._base_.models.swin_transformer_v2_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
model = dict(backbone=dict(window_size=[16, 16, 16, 8]))

View File

@ -7,7 +7,7 @@ from mmpretrain.models import ImageClassifier
with read_base():
from .._base_.datasets.imagenet_bs64_swin_256 import *
from .._base_.default_runtime import *
from .._base_.models.swin_transformer_v2.base_256 import *
from .._base_.models.swin_transformer_v2_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
model = dict(

View File

@ -7,7 +7,7 @@ from mmpretrain.models import ImageClassifier
with read_base():
from .._base_.datasets.imagenet_bs64_swin_384 import *
from .._base_.default_runtime import *
from .._base_.models.swin_transformer_v2.base_384 import *
from .._base_.models.swin_transformer_v2_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
model = dict(

View File

@ -1,9 +1,23 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmengine.model import ConstantInit, TruncNormalInit
from mmpretrain.models import CutMix, Mixup
with read_base():
from .._base_.datasets.imagenet_bs64_swin_256 import *
from .._base_.default_runtime import *
from .._base_.models.swin_transformer_v2.base_256 import *
from .._base_.models.swin_transformer_v2_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
# model settings
model.update(
backbone=dict(img_size=256, drop_path_rate=0.5),
init_cfg=[
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(
augments=[dict(type=Mixup, alpha=0.8),
dict(type=CutMix, alpha=1.0)]))

View File

@ -5,7 +5,7 @@ from mmengine.config import read_base
with read_base():
from .._base_.datasets.imagenet21k_bs128 import *
from .._base_.default_runtime import *
from .._base_.models.swin_transformer_v2.base_256 import *
from .._base_.models.swin_transformer_v2_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
# model settings

View File

@ -8,7 +8,7 @@ from mmpretrain.models import ImageClassifier
with read_base():
from .._base_.datasets.imagenet_bs64_swin_256 import *
from .._base_.default_runtime import *
from .._base_.models.swin_transformer_v2.large_256 import *
from .._base_.models.swin_transformer_v2_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
model = dict(

View File

@ -8,7 +8,7 @@ from mmpretrain.models import ImageClassifier
with read_base():
from .._base_.datasets.imagenet_bs64_swin_384 import *
from .._base_.default_runtime import *
from .._base_.models.swin_transformer_v2.large_384 import *
from .._base_.models.swin_transformer_v2_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
model = dict(

View File

@ -5,7 +5,7 @@ from mmengine.config import read_base
with read_base():
from .._base_.datasets.imagenet_bs64_swin_256 import *
from .._base_.default_runtime import *
from .._base_.models.swin_transformer_v2.small_256 import *
from .._base_.models.swin_transformer_v2_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
model = dict(backbone=dict(window_size=[16, 16, 16, 8]))

View File

@ -1,9 +1,24 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmengine.model import ConstantInit, TruncNormalInit
from mmpretrain.models import CutMix, Mixup
with read_base():
from .._base_.datasets.imagenet_bs64_swin_256 import *
from .._base_.default_runtime import *
from .._base_.models.swin_transformer_v2.small_256 import *
from .._base_.models.swin_transformer_v2_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
# model settings
model.update(
backbone=dict(arch='small', img_size=256, drop_path_rate=0.3),
head=dict(in_channels=768),
init_cfg=[
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(
augments=[dict(type=Mixup, alpha=0.8),
dict(type=CutMix, alpha=1.0)]))

View File

@ -5,7 +5,7 @@ from mmengine.config import read_base
with read_base():
from .._base_.datasets.imagenet_bs64_swin_256 import *
from .._base_.default_runtime import *
from .._base_.models.swin_transformer_v2.tiny_256 import *
from .._base_.models.swin_transformer_v2_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
model = dict(backbone=dict(window_size=[16, 16, 16, 8]))

View File

@ -1,9 +1,24 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmengine.model import ConstantInit, TruncNormalInit
from mmpretrain.models import CutMix, Mixup
with read_base():
from .._base_.datasets.imagenet_bs64_swin_256 import *
from .._base_.default_runtime import *
from .._base_.models.swin_transformer_v2.tiny_256 import *
from .._base_.models.swin_transformer_v2_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
# model settings
model.update(
backbone=dict(arch='tiny', img_size=256, drop_path_rate=0.2),
head=dict(in_channels=768),
init_cfg=[
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(
augments=[dict(type=Mixup, alpha=0.8),
dict(type=CutMix, alpha=1.0)]))