only keep one file to set swin transformer v2 model config
parent
f4d372ba7d
commit
9b75ce0aa4
|
@ -4,7 +4,6 @@ from mmpretrain.models import (CrossEntropyLoss, GlobalAveragePooling,
|
||||||
ImageClassifier, LinearClsHead, SwinTransformer)
|
ImageClassifier, LinearClsHead, SwinTransformer)
|
||||||
|
|
||||||
# model settings
|
# model settings
|
||||||
# Only for evaluation
|
|
||||||
model = dict(
|
model = dict(
|
||||||
type=ImageClassifier,
|
type=ImageClassifier,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
|
|
|
@ -1,29 +0,0 @@
|
||||||
# Copyright (c) OpenMMLab. All rights reserved.
|
|
||||||
# This is a BETA new format config file, and the usage may change recently.
|
|
||||||
from mmengine.model import ConstantInit, TruncNormalInit
|
|
||||||
|
|
||||||
from mmpretrain.models import (CutMix, GlobalAveragePooling, ImageClassifier,
|
|
||||||
LabelSmoothLoss, LinearClsHead, Mixup,
|
|
||||||
SwinTransformerV2)
|
|
||||||
|
|
||||||
# model settings
|
|
||||||
model = dict(
|
|
||||||
type=ImageClassifier,
|
|
||||||
backbone=dict(
|
|
||||||
type=SwinTransformerV2, arch='base', img_size=256, drop_path_rate=0.5),
|
|
||||||
neck=dict(type=GlobalAveragePooling),
|
|
||||||
head=dict(
|
|
||||||
type=LinearClsHead,
|
|
||||||
num_classes=1000,
|
|
||||||
in_channels=1024,
|
|
||||||
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
|
|
||||||
loss=dict(type=LabelSmoothLoss, label_smooth_val=0.1, mode='original'),
|
|
||||||
cal_acc=False),
|
|
||||||
init_cfg=[
|
|
||||||
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
|
|
||||||
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
|
|
||||||
],
|
|
||||||
train_cfg=dict(
|
|
||||||
augments=[dict(type=Mixup, alpha=0.8),
|
|
||||||
dict(type=CutMix, alpha=1.0)]),
|
|
||||||
)
|
|
|
@ -1,20 +0,0 @@
|
||||||
# Copyright (c) OpenMMLab. All rights reserved.
|
|
||||||
# This is a BETA new format config file, and the usage may change recently.
|
|
||||||
from mmpretrain.models import (CrossEntropyLoss, GlobalAveragePooling,
|
|
||||||
ImageClassifier, LinearClsHead,
|
|
||||||
SwinTransformerV2)
|
|
||||||
|
|
||||||
# model settings
|
|
||||||
# Only for evaluation
|
|
||||||
model = dict(
|
|
||||||
type=ImageClassifier,
|
|
||||||
backbone=dict(
|
|
||||||
type=SwinTransformerV2, arch='large', img_size=256,
|
|
||||||
drop_path_rate=0.2),
|
|
||||||
neck=dict(type=GlobalAveragePooling),
|
|
||||||
head=dict(
|
|
||||||
type=LinearClsHead,
|
|
||||||
num_classes=1000,
|
|
||||||
in_channels=1536,
|
|
||||||
loss=dict(type=CrossEntropyLoss, loss_weight=1.0),
|
|
||||||
topk=(1, 5)))
|
|
|
@ -1,20 +0,0 @@
|
||||||
# Copyright (c) OpenMMLab. All rights reserved.
|
|
||||||
# This is a BETA new format config file, and the usage may change recently.
|
|
||||||
from mmpretrain.models import (CrossEntropyLoss, GlobalAveragePooling,
|
|
||||||
ImageClassifier, LinearClsHead,
|
|
||||||
SwinTransformerV2)
|
|
||||||
|
|
||||||
# model settings
|
|
||||||
# Only for evaluation
|
|
||||||
model = dict(
|
|
||||||
type=ImageClassifier,
|
|
||||||
backbone=dict(
|
|
||||||
type=SwinTransformerV2, arch='large', img_size=384,
|
|
||||||
drop_path_rate=0.2),
|
|
||||||
neck=dict(type=GlobalAveragePooling),
|
|
||||||
head=dict(
|
|
||||||
type=LinearClsHead,
|
|
||||||
num_classes=1000,
|
|
||||||
in_channels=1536,
|
|
||||||
loss=dict(type=CrossEntropyLoss, loss_weight=1.0),
|
|
||||||
topk=(1, 5)))
|
|
|
@ -1,30 +0,0 @@
|
||||||
# Copyright (c) OpenMMLab. All rights reserved.
|
|
||||||
# This is a BETA new format config file, and the usage may change recently.
|
|
||||||
from mmengine.model import ConstantInit, TruncNormalInit
|
|
||||||
|
|
||||||
from mmpretrain.models import (CutMix, GlobalAveragePooling, ImageClassifier,
|
|
||||||
LabelSmoothLoss, LinearClsHead, Mixup,
|
|
||||||
SwinTransformerV2)
|
|
||||||
|
|
||||||
# model settings
|
|
||||||
model = dict(
|
|
||||||
type=ImageClassifier,
|
|
||||||
backbone=dict(
|
|
||||||
type=SwinTransformerV2, arch='small', img_size=256,
|
|
||||||
drop_path_rate=0.3),
|
|
||||||
neck=dict(type=GlobalAveragePooling),
|
|
||||||
head=dict(
|
|
||||||
type=LinearClsHead,
|
|
||||||
num_classes=1000,
|
|
||||||
in_channels=768,
|
|
||||||
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
|
|
||||||
loss=dict(type=LabelSmoothLoss, label_smooth_val=0.1, mode='original'),
|
|
||||||
cal_acc=False),
|
|
||||||
init_cfg=[
|
|
||||||
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
|
|
||||||
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
|
|
||||||
],
|
|
||||||
train_cfg=dict(
|
|
||||||
augments=[dict(type=Mixup, alpha=0.8),
|
|
||||||
dict(type=CutMix, alpha=1.0)]),
|
|
||||||
)
|
|
|
@ -1,29 +0,0 @@
|
||||||
# Copyright (c) OpenMMLab. All rights reserved.
|
|
||||||
# This is a BETA new format config file, and the usage may change recently.
|
|
||||||
from mmengine.model import ConstantInit, TruncNormalInit
|
|
||||||
|
|
||||||
from mmpretrain.models import (CutMix, GlobalAveragePooling, ImageClassifier,
|
|
||||||
LabelSmoothLoss, LinearClsHead, Mixup,
|
|
||||||
SwinTransformerV2)
|
|
||||||
|
|
||||||
# model settings
|
|
||||||
model = dict(
|
|
||||||
type=ImageClassifier,
|
|
||||||
backbone=dict(
|
|
||||||
type=SwinTransformerV2, arch='tiny', img_size=256, drop_path_rate=0.2),
|
|
||||||
neck=dict(type=GlobalAveragePooling),
|
|
||||||
head=dict(
|
|
||||||
type=LinearClsHead,
|
|
||||||
num_classes=1000,
|
|
||||||
in_channels=768,
|
|
||||||
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
|
|
||||||
loss=dict(type=LabelSmoothLoss, label_smooth_val=0.1, mode='original'),
|
|
||||||
cal_acc=False),
|
|
||||||
init_cfg=[
|
|
||||||
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
|
|
||||||
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
|
|
||||||
],
|
|
||||||
train_cfg=dict(
|
|
||||||
augments=[dict(type=Mixup, alpha=0.8),
|
|
||||||
dict(type=CutMix, alpha=1.0)]),
|
|
||||||
)
|
|
|
@ -5,7 +5,7 @@ from mmengine.config import read_base
|
||||||
with read_base():
|
with read_base():
|
||||||
from .._base_.datasets.imagenet21k_bs128 import *
|
from .._base_.datasets.imagenet21k_bs128 import *
|
||||||
from .._base_.default_runtime import *
|
from .._base_.default_runtime import *
|
||||||
from .._base_.models.swin_transformer_v2.base_256 import *
|
from .._base_.models.swin_transformer_v2_base import *
|
||||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||||
|
|
||||||
# model settings
|
# model settings
|
||||||
|
|
|
@ -5,7 +5,7 @@ from mmengine.config import read_base
|
||||||
with read_base():
|
with read_base():
|
||||||
from .._base_.datasets.imagenet_bs64_swin_256 import *
|
from .._base_.datasets.imagenet_bs64_swin_256 import *
|
||||||
from .._base_.default_runtime import *
|
from .._base_.default_runtime import *
|
||||||
from .._base_.models.swin_transformer_v2.base_256 import *
|
from .._base_.models.swin_transformer_v2_base import *
|
||||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||||
|
|
||||||
model = dict(backbone=dict(window_size=[16, 16, 16, 8]))
|
model = dict(backbone=dict(window_size=[16, 16, 16, 8]))
|
||||||
|
|
|
@ -7,7 +7,7 @@ from mmpretrain.models import ImageClassifier
|
||||||
with read_base():
|
with read_base():
|
||||||
from .._base_.datasets.imagenet_bs64_swin_256 import *
|
from .._base_.datasets.imagenet_bs64_swin_256 import *
|
||||||
from .._base_.default_runtime import *
|
from .._base_.default_runtime import *
|
||||||
from .._base_.models.swin_transformer_v2.base_256 import *
|
from .._base_.models.swin_transformer_v2_base import *
|
||||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||||
|
|
||||||
model = dict(
|
model = dict(
|
||||||
|
|
|
@ -7,7 +7,7 @@ from mmpretrain.models import ImageClassifier
|
||||||
with read_base():
|
with read_base():
|
||||||
from .._base_.datasets.imagenet_bs64_swin_384 import *
|
from .._base_.datasets.imagenet_bs64_swin_384 import *
|
||||||
from .._base_.default_runtime import *
|
from .._base_.default_runtime import *
|
||||||
from .._base_.models.swin_transformer_v2.base_384 import *
|
from .._base_.models.swin_transformer_v2_base import *
|
||||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||||
|
|
||||||
model = dict(
|
model = dict(
|
||||||
|
|
|
@ -1,9 +1,23 @@
|
||||||
# Copyright (c) OpenMMLab. All rights reserved.
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||||||
# This is a BETA new format config file, and the usage may change recently.
|
# This is a BETA new format config file, and the usage may change recently.
|
||||||
from mmengine.config import read_base
|
from mmengine.config import read_base
|
||||||
|
from mmengine.model import ConstantInit, TruncNormalInit
|
||||||
|
|
||||||
|
from mmpretrain.models import CutMix, Mixup
|
||||||
|
|
||||||
with read_base():
|
with read_base():
|
||||||
from .._base_.datasets.imagenet_bs64_swin_256 import *
|
from .._base_.datasets.imagenet_bs64_swin_256 import *
|
||||||
from .._base_.default_runtime import *
|
from .._base_.default_runtime import *
|
||||||
from .._base_.models.swin_transformer_v2.base_256 import *
|
from .._base_.models.swin_transformer_v2_base import *
|
||||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||||
|
|
||||||
|
# model settings
|
||||||
|
model.update(
|
||||||
|
backbone=dict(img_size=256, drop_path_rate=0.5),
|
||||||
|
init_cfg=[
|
||||||
|
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
|
||||||
|
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
|
||||||
|
],
|
||||||
|
train_cfg=dict(
|
||||||
|
augments=[dict(type=Mixup, alpha=0.8),
|
||||||
|
dict(type=CutMix, alpha=1.0)]))
|
||||||
|
|
|
@ -5,7 +5,7 @@ from mmengine.config import read_base
|
||||||
with read_base():
|
with read_base():
|
||||||
from .._base_.datasets.imagenet21k_bs128 import *
|
from .._base_.datasets.imagenet21k_bs128 import *
|
||||||
from .._base_.default_runtime import *
|
from .._base_.default_runtime import *
|
||||||
from .._base_.models.swin_transformer_v2.base_256 import *
|
from .._base_.models.swin_transformer_v2_base import *
|
||||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||||
|
|
||||||
# model settings
|
# model settings
|
||||||
|
|
|
@ -8,7 +8,7 @@ from mmpretrain.models import ImageClassifier
|
||||||
with read_base():
|
with read_base():
|
||||||
from .._base_.datasets.imagenet_bs64_swin_256 import *
|
from .._base_.datasets.imagenet_bs64_swin_256 import *
|
||||||
from .._base_.default_runtime import *
|
from .._base_.default_runtime import *
|
||||||
from .._base_.models.swin_transformer_v2.large_256 import *
|
from .._base_.models.swin_transformer_v2_base import *
|
||||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||||
|
|
||||||
model = dict(
|
model = dict(
|
||||||
|
|
|
@ -8,7 +8,7 @@ from mmpretrain.models import ImageClassifier
|
||||||
with read_base():
|
with read_base():
|
||||||
from .._base_.datasets.imagenet_bs64_swin_384 import *
|
from .._base_.datasets.imagenet_bs64_swin_384 import *
|
||||||
from .._base_.default_runtime import *
|
from .._base_.default_runtime import *
|
||||||
from .._base_.models.swin_transformer_v2.large_384 import *
|
from .._base_.models.swin_transformer_v2_base import *
|
||||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||||
|
|
||||||
model = dict(
|
model = dict(
|
||||||
|
|
|
@ -5,7 +5,7 @@ from mmengine.config import read_base
|
||||||
with read_base():
|
with read_base():
|
||||||
from .._base_.datasets.imagenet_bs64_swin_256 import *
|
from .._base_.datasets.imagenet_bs64_swin_256 import *
|
||||||
from .._base_.default_runtime import *
|
from .._base_.default_runtime import *
|
||||||
from .._base_.models.swin_transformer_v2.small_256 import *
|
from .._base_.models.swin_transformer_v2_base import *
|
||||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||||
|
|
||||||
model = dict(backbone=dict(window_size=[16, 16, 16, 8]))
|
model = dict(backbone=dict(window_size=[16, 16, 16, 8]))
|
||||||
|
|
|
@ -1,9 +1,24 @@
|
||||||
# Copyright (c) OpenMMLab. All rights reserved.
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||||||
# This is a BETA new format config file, and the usage may change recently.
|
# This is a BETA new format config file, and the usage may change recently.
|
||||||
from mmengine.config import read_base
|
from mmengine.config import read_base
|
||||||
|
from mmengine.model import ConstantInit, TruncNormalInit
|
||||||
|
|
||||||
|
from mmpretrain.models import CutMix, Mixup
|
||||||
|
|
||||||
with read_base():
|
with read_base():
|
||||||
from .._base_.datasets.imagenet_bs64_swin_256 import *
|
from .._base_.datasets.imagenet_bs64_swin_256 import *
|
||||||
from .._base_.default_runtime import *
|
from .._base_.default_runtime import *
|
||||||
from .._base_.models.swin_transformer_v2.small_256 import *
|
from .._base_.models.swin_transformer_v2_base import *
|
||||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||||
|
|
||||||
|
# model settings
|
||||||
|
model.update(
|
||||||
|
backbone=dict(arch='small', img_size=256, drop_path_rate=0.3),
|
||||||
|
head=dict(in_channels=768),
|
||||||
|
init_cfg=[
|
||||||
|
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
|
||||||
|
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
|
||||||
|
],
|
||||||
|
train_cfg=dict(
|
||||||
|
augments=[dict(type=Mixup, alpha=0.8),
|
||||||
|
dict(type=CutMix, alpha=1.0)]))
|
||||||
|
|
|
@ -5,7 +5,7 @@ from mmengine.config import read_base
|
||||||
with read_base():
|
with read_base():
|
||||||
from .._base_.datasets.imagenet_bs64_swin_256 import *
|
from .._base_.datasets.imagenet_bs64_swin_256 import *
|
||||||
from .._base_.default_runtime import *
|
from .._base_.default_runtime import *
|
||||||
from .._base_.models.swin_transformer_v2.tiny_256 import *
|
from .._base_.models.swin_transformer_v2_base import *
|
||||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||||
|
|
||||||
model = dict(backbone=dict(window_size=[16, 16, 16, 8]))
|
model = dict(backbone=dict(window_size=[16, 16, 16, 8]))
|
||||||
|
|
|
@ -1,9 +1,24 @@
|
||||||
# Copyright (c) OpenMMLab. All rights reserved.
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||||||
# This is a BETA new format config file, and the usage may change recently.
|
# This is a BETA new format config file, and the usage may change recently.
|
||||||
from mmengine.config import read_base
|
from mmengine.config import read_base
|
||||||
|
from mmengine.model import ConstantInit, TruncNormalInit
|
||||||
|
|
||||||
|
from mmpretrain.models import CutMix, Mixup
|
||||||
|
|
||||||
with read_base():
|
with read_base():
|
||||||
from .._base_.datasets.imagenet_bs64_swin_256 import *
|
from .._base_.datasets.imagenet_bs64_swin_256 import *
|
||||||
from .._base_.default_runtime import *
|
from .._base_.default_runtime import *
|
||||||
from .._base_.models.swin_transformer_v2.tiny_256 import *
|
from .._base_.models.swin_transformer_v2_base import *
|
||||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||||
|
|
||||||
|
# model settings
|
||||||
|
model.update(
|
||||||
|
backbone=dict(arch='tiny', img_size=256, drop_path_rate=0.2),
|
||||||
|
head=dict(in_channels=768),
|
||||||
|
init_cfg=[
|
||||||
|
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
|
||||||
|
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
|
||||||
|
],
|
||||||
|
train_cfg=dict(
|
||||||
|
augments=[dict(type=Mixup, alpha=0.8),
|
||||||
|
dict(type=CutMix, alpha=1.0)]))
|
||||||
|
|
Loading…
Reference in New Issue