[Refactor] Move transforms in mmselfsup to mmpretrain. (#1396)

* [Refactor] Move transforms in mmselfsup to mmpretrain.

* Update transform docs and configs. And register some mmcv transforms in
mmpretrain.

* Fix missing transform wrapper.

* update selfsup transforms

* Fix UT

* Fix UT

* update gaussianblur inconfigs

---------

Co-authored-by: fangyixiao18 <fangyx18@hotmail.com>
pull/1400/head
Ma Zerun 2023-03-03 15:01:11 +08:00 committed by GitHub
parent 1d6e37e56b
commit a05c79e806
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
169 changed files with 1253 additions and 559 deletions

View File

@ -11,11 +11,11 @@ data_preprocessor = dict(
train_pipeline = [
dict(type='RandomCrop', crop_size=32, padding=4),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -11,11 +11,11 @@ data_preprocessor = dict(
train_pipeline = [
dict(type='RandomCrop', crop_size=32, padding=4),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -14,14 +14,14 @@ train_pipeline = [
dict(type='Resize', scale=510),
dict(type='RandomCrop', crop_size=384),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=510),
dict(type='CenterCrop', crop_size=384),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -13,14 +13,14 @@ train_pipeline = [
dict(type='Resize', scale=600),
dict(type='RandomCrop', crop_size=448),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=600),
dict(type='CenterCrop', crop_size=448),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -13,14 +13,14 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -28,14 +28,14 @@ train_pipeline = [
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short', backend='pillow'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -37,7 +37,7 @@ train_pipeline = [
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -49,7 +49,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -37,7 +37,7 @@ train_pipeline = [
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -49,7 +49,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -38,7 +38,7 @@ train_pipeline = [
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -50,7 +50,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -37,7 +37,7 @@ train_pipeline = [
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -49,7 +49,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -17,7 +17,7 @@ train_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -29,7 +29,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=196),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -17,7 +17,7 @@ train_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -29,7 +29,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=336),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -17,7 +17,7 @@ train_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -29,7 +29,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=560),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -16,13 +16,13 @@ train_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=384, backend='pillow', interpolation='bicubic'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -31,10 +31,7 @@ train_pipeline = [
num_masking_patches=75,
max_num_patches=75,
min_num_patches=16),
dict(
type='PackSelfSupInputs',
algorithm_keys=['mask'],
meta_keys=['img_path'])
dict(type='PackInputs')
]
train_dataloader = dict(

View File

@ -37,7 +37,7 @@ train_pipeline = [
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -49,7 +49,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -37,7 +37,7 @@ train_pipeline = [
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -49,7 +49,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -29,7 +29,7 @@ train_pipeline = [
magnitude_std=0.5,
hparams=dict(
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -41,7 +41,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs')
dict(type='PackInputs')
]
train_dataloader = dict(

View File

@ -29,7 +29,7 @@ train_pipeline = [
magnitude_std=0.5,
hparams=dict(
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -41,7 +41,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs')
dict(type='PackInputs')
]
train_dataloader = dict(

View File

@ -9,11 +9,7 @@ data_preprocessor = dict(
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
size=192,
scale=(0.67, 1.0),
ratio=(3. / 4., 4. / 3.)),
dict(type='RandomResizedCrop', scale=192, crop_ratio_range=(0.67, 1.0)),
dict(type='RandomFlip', prob=0.5),
dict(
type='SimMIMMaskGenerator',
@ -21,10 +17,7 @@ train_pipeline = [
mask_patch_size=32,
model_patch_size=4,
mask_ratio=0.6),
dict(
type='PackSelfSupInputs',
algorithm_keys=['mask'],
meta_keys=['img_path'])
dict(type='PackInputs')
]
train_dataloader = dict(
@ -39,19 +32,3 @@ train_dataloader = dict(
ann_file='meta/train.txt',
data_prefix=dict(img_path='train/'),
pipeline=train_pipeline))
# for visualization
vis_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=(192, 192), backend='pillow'),
dict(
type='SimMIMMaskGenerator',
input_size=192,
mask_patch_size=32,
model_patch_size=4,
mask_ratio=0.6),
dict(
type='PackSelfSupInputs',
algorithm_keys=['mask'],
meta_keys=['img_path'])
]

View File

@ -34,7 +34,7 @@ train_pipeline = [
max_area_ratio=1 / 3,
fill_color=[103.53, 116.28, 123.675],
fill_std=[57.375, 57.12, 58.395]),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -46,7 +46,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=192),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -13,14 +13,14 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -10,7 +10,7 @@ data_preprocessor = dict(
view_pipeline1 = [
dict(
type='RandomResizedCrop',
size=224,
scale=224,
interpolation='bicubic',
backend='pillow'),
dict(type='RandomFlip', prob=0.5),
@ -30,13 +30,17 @@ view_pipeline1 = [
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),
dict(type='RandomGaussianBlur', sigma_min=0.1, sigma_max=2.0, prob=1.),
dict(
type='GaussianBlur',
magnitude_range=(0.1, 2.0),
magnitude_std='inf',
prob=1.),
dict(type='RandomSolarize', prob=0.),
]
view_pipeline2 = [
dict(
type='RandomResizedCrop',
size=224,
scale=224,
interpolation='bicubic',
backend='pillow'),
dict(type='RandomFlip', prob=0.5),
@ -56,7 +60,11 @@ view_pipeline2 = [
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),
dict(type='RandomGaussianBlur', sigma_min=0.1, sigma_max=2.0, prob=0.1),
dict(
type='GaussianBlur',
magnitude_range=(0.1, 2.0),
magnitude_std='inf',
prob=0.1),
dict(type='RandomSolarize', prob=0.2)
]
train_pipeline = [
@ -65,7 +73,7 @@ train_pipeline = [
type='MultiView',
num_views=[1, 1],
transforms=[view_pipeline1, view_pipeline2]),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])
dict(type='PackInputs')
]
train_dataloader = dict(

View File

@ -10,7 +10,10 @@ data_preprocessor = dict(
# The difference between mocov2 and mocov1 is the transforms in the pipeline
view_pipeline = [
dict(
type='RandomResizedCrop', size=224, scale=(0.2, 1.), backend='pillow'),
type='RandomResizedCrop',
scale=224,
crop_ratio_range=(0.2, 1.),
backend='pillow'),
dict(
type='RandomApply',
transforms=[
@ -27,14 +30,18 @@ view_pipeline = [
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),
dict(type='RandomGaussianBlur', sigma_min=0.1, sigma_max=2.0, prob=0.5),
dict(
type='GaussianBlur',
magnitude_range=(0.1, 2.0),
magnitude_std='inf',
prob=0.5),
dict(type='RandomFlip', prob=0.5),
]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='MultiView', num_views=2, transforms=[view_pipeline]),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])
dict(type='PackInputs')
]
train_dataloader = dict(

View File

@ -17,7 +17,7 @@ train_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -29,7 +29,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -13,14 +13,14 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224, backend='pillow'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short', backend='pillow'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -1,57 +0,0 @@
# dataset settings
dataset_type = 'ImageNet'
data_root = 'data/imagenet/'
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224, backend='pillow'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short', backend='pillow'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs'),
]
train_dataloader = dict(
batch_size=32,
num_workers=4,
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='meta/train.txt',
data_prefix='train',
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
persistent_workers=True,
pin_memory=True,
)
val_dataloader = dict(
batch_size=32,
num_workers=4,
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='meta/val.txt',
data_prefix='val',
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
persistent_workers=True,
)
val_evaluator = dict(type='Accuracy', topk=(1, 5))
# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator

View File

@ -8,7 +8,7 @@ data_preprocessor = dict(
to_rgb=True)
view_pipeline = [
dict(type='RandomResizedCrop', size=224, backend='pillow'),
dict(type='RandomResizedCrop', scale=224, backend='pillow'),
dict(type='RandomFlip', prob=0.5),
dict(
type='RandomApply',
@ -26,13 +26,17 @@ view_pipeline = [
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),
dict(type='RandomGaussianBlur', sigma_min=0.1, sigma_max=2.0, prob=0.5),
dict(
type='GaussianBlur',
magnitude_range=(0.1, 2.0),
magnitude_std='inf',
prob=0.5),
]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='MultiView', num_views=2, transforms=[view_pipeline]),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])
dict(type='PackInputs')
]
train_dataloader = dict(

View File

@ -11,12 +11,12 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
size=224,
scale=(0.2, 1.0),
scale=224,
crop_ratio_range=(0.2, 1.0),
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])
dict(type='PackInputs')
]
train_dataloader = dict(

View File

@ -9,7 +9,10 @@ data_preprocessor = dict(
view_pipeline1 = [
dict(
type='RandomResizedCrop', size=224, scale=(0.2, 1.), backend='pillow'),
type='RandomResizedCrop',
scale=224,
crop_ratio_range=(0.2, 1.),
backend='pillow'),
dict(
type='RandomApply',
transforms=[
@ -26,13 +29,20 @@ view_pipeline1 = [
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),
dict(type='RandomGaussianBlur', sigma_min=0.1, sigma_max=2.0, prob=1.),
dict(
type='GaussianBlur',
magnitude_range=(0.1, 2.0),
magnitude_std='inf',
prob=1.),
dict(type='RandomSolarize', prob=0.),
dict(type='RandomFlip', prob=0.5),
]
view_pipeline2 = [
dict(
type='RandomResizedCrop', size=224, scale=(0.2, 1.), backend='pillow'),
type='RandomResizedCrop',
scale=224,
crop_ratio_range=(0.2, 1.),
backend='pillow'),
dict(
type='RandomApply',
transforms=[
@ -49,7 +59,11 @@ view_pipeline2 = [
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),
dict(type='RandomGaussianBlur', sigma_min=0.1, sigma_max=2.0, prob=0.1),
dict(
type='GaussianBlur',
magnitude_range=(0.1, 2.0),
magnitude_std='inf',
prob=0.1),
dict(type='RandomSolarize', prob=0.2),
dict(type='RandomFlip', prob=0.5),
]
@ -59,7 +73,7 @@ train_pipeline = [
type='MultiView',
num_views=[1, 1],
transforms=[view_pipeline1, view_pipeline2]),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])
dict(type='PackInputs')
]
train_dataloader = dict(

View File

@ -13,14 +13,14 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -21,14 +21,14 @@ train_pipeline = [
policies='imagenet',
hparams=dict(
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -37,7 +37,7 @@ train_pipeline = [
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackClsInputs')
dict(type='PackInputs')
]
test_pipeline = [
@ -49,7 +49,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs')
dict(type='PackInputs')
]
train_dataloader = dict(

View File

@ -37,7 +37,7 @@ train_pipeline = [
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -49,7 +49,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -17,7 +17,7 @@ train_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -29,7 +29,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=384),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -37,7 +37,7 @@ train_pipeline = [
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -49,7 +49,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=256),
dict(type='PackClsInputs')
dict(type='PackInputs')
]
train_dataloader = dict(

View File

@ -14,14 +14,14 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short', interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -13,14 +13,14 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224, backend='pillow'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short', backend='pillow'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -25,7 +25,7 @@ train_pipeline = [
policies='imagenet',
hparams=dict(
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -37,7 +37,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -37,7 +37,7 @@ train_pipeline = [
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -49,7 +49,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -37,7 +37,7 @@ train_pipeline = [
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -49,7 +49,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=256),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -17,13 +17,13 @@ train_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=384, backend='pillow', interpolation='bicubic'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -37,7 +37,7 @@ train_pipeline = [
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -49,7 +49,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -16,7 +16,7 @@ train_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -28,7 +28,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=320),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -12,14 +12,14 @@ train_pipeline = [
dict(type='Resize', scale=512),
dict(type='RandomCrop', crop_size=448),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=512),
dict(type='CenterCrop', crop_size=448),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -15,14 +15,14 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(

View File

@ -1,6 +1,6 @@
_base_ = [
'../../_base_/models/resnet50.py',
'../../_base_/datasets/imagenet_bs32_pillow.py',
'../../_base_/datasets/imagenet_bs32_pil_resize.py',
'../../_base_/schedules/imagenet_sgd_coslr_100e.py',
'../../_base_/default_runtime.py',
]

View File

@ -33,10 +33,7 @@ train_pipeline = [
num_masking_patches=75,
max_num_patches=None,
min_num_patches=16),
dict(
type='PackSelfSupInputs',
algorithm_keys=['mask'],
meta_keys=['img_path'])
dict(type='PackInputs')
]
train_dataloader = dict(
batch_size=256,

View File

@ -64,7 +64,7 @@ train_pipeline = [
max_area_ratio=0.3333333333333333,
fill_color=[103.53, 116.28, 123.675],
fill_std=[57.375, 57.12, 58.395]),
dict(type='PackClsInputs')
dict(type='PackInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
@ -75,7 +75,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs')
dict(type='PackInputs')
]
train_dataloader = dict(batch_size=128, dataset=dict(pipeline=train_pipeline))

View File

@ -57,7 +57,7 @@ train_pipeline = [
max_area_ratio=0.3333333333333333,
fill_color=[103.53, 116.28, 123.675],
fill_std=[57.375, 57.12, 58.395]),
dict(type='PackClsInputs')
dict(type='PackInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
@ -68,7 +68,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs')
dict(type='PackInputs')
]
train_dataloader = dict(batch_size=128, dataset=dict(pipeline=train_pipeline))

View File

@ -1,6 +1,6 @@
_base_ = [
'../../_base_/models/resnet50.py',
'../../_base_/datasets/imagenet_bs32_pillow.py',
'../../_base_/datasets/imagenet_bs32_pil_resize.py',
'../../_base_/schedules/imagenet_lars_coslr_90e.py',
'../../_base_/default_runtime.py',
]

View File

@ -43,7 +43,7 @@ train_pipeline = [
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -55,7 +55,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline), batch_size=128)
val_dataloader = dict(dataset=dict(pipeline=test_pipeline), batch_size=128)

View File

@ -28,10 +28,7 @@ train_pipeline = [
num_masking_patches=75,
max_num_patches=None,
min_num_patches=16),
dict(
type='PackSelfSupInputs',
algorithm_keys=['mask'],
meta_keys=['img_path'])
dict(type='PackInputs')
]
train_dataloader = dict(

View File

@ -14,13 +14,13 @@ train_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=512, backend='pillow', interpolation='bicubic'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(batch_size=32, dataset=dict(pipeline=train_pipeline))

View File

@ -25,7 +25,7 @@ train_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -37,7 +37,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=256),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -25,7 +25,7 @@ train_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -37,7 +37,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=256),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -25,7 +25,7 @@ train_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
@ -37,7 +37,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -38,14 +38,14 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=448, crop_ratio_range=(0.7, 1.0)),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=448),
dict(
type='PackClsInputs',
type='PackInputs',
# `gt_label_difficult` is needed for VOC evaluation
meta_keys=('sample_idx', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'flip', 'flip_direction',

View File

@ -1,6 +1,6 @@
_base_ = [
'../../_base_/models/resnet50.py',
'../../_base_/datasets/imagenet_bs32_pillow.py',
'../../_base_/datasets/imagenet_bs32_pil_resize.py',
'../../_base_/schedules/imagenet_sgd_steplr_100e.py',
'../../_base_/default_runtime.py',
]

View File

@ -11,7 +11,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=256),
dict(type='PackClsInputs')
dict(type='PackInputs')
]
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))

View File

@ -11,7 +11,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=256),
dict(type='PackClsInputs')
dict(type='PackInputs')
]
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))

View File

@ -17,13 +17,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=224),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -10,13 +10,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=224),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -17,13 +17,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=240),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=240),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -10,13 +10,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=240),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=240),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -17,13 +17,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=260),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=260),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -10,13 +10,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=260),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=260),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -17,13 +17,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=300),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=300),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -10,13 +10,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=300),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=300),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -17,13 +17,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=380),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=380),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -10,13 +10,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=380),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=380),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -17,13 +17,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=456),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=456),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -10,13 +10,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=456),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=456),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -17,13 +17,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=528),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=528),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -10,13 +10,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=528),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=528),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -17,13 +17,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=600),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=600),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -10,13 +10,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=600),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=600),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -17,13 +17,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=672),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=672),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -10,13 +10,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=672),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=672),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -17,13 +17,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=240),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=240),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -10,13 +10,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=224),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=224),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -10,13 +10,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=475),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=475),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -10,13 +10,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=800),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=800),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(batch_size=8, dataset=dict(pipeline=train_pipeline))

View File

@ -44,13 +44,13 @@ train_pipeline = [
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=224, crop_padding=0),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -7,13 +7,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=192),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=240, crop_padding=0),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -7,13 +7,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=208),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=260, crop_padding=0),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -7,13 +7,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=240),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=300, crop_padding=0),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -9,13 +9,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=384, crop_padding=0),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=480, crop_padding=0),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -9,13 +9,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=384, crop_padding=0),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=480, crop_padding=0),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -20,13 +20,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=300, crop_padding=0),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=384, crop_padding=0),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -23,13 +23,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=224),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=224, crop_padding=0),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -9,13 +9,13 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=384, crop_padding=0),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=512, crop_padding=0),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -29,7 +29,7 @@ train_pipeline = [
max_area_ratio=0.3333333333333333,
fill_color=[103.53, 116.28, 123.675],
fill_std=[57.375, 57.12, 58.395]),
dict(type='PackClsInputs')
dict(type='PackInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile'),
@ -40,7 +40,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs')
dict(type='PackInputs')
]
train_dataloader = dict(batch_size=128, dataset=dict(pipeline=train_pipeline))

View File

@ -1,5 +1,5 @@
_base_ = [
'../../_base_/datasets/imagenet_bs32_pillow.py',
'../../_base_/datasets/imagenet_bs32_pil_resize.py',
'../../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../../_base_/default_runtime.py'
]

View File

@ -9,14 +9,14 @@ train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=299),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=342, edge='short'),
dict(type='CenterCrop', crop_size=299),
dict(type='PackClsInputs'),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -12,7 +12,7 @@ model = dict(
dataset_type = 'MNIST'
data_preprocessor = dict(mean=[33.46], std=[78.87], num_classes=10)
pipeline = [dict(type='Resize', scale=32), dict(type='PackClsInputs')]
pipeline = [dict(type='Resize', scale=32), dict(type='PackInputs')]
common_data_cfg = dict(
type=dataset_type, data_prefix='data/mnist', pipeline=pipeline)

View File

@ -28,7 +28,7 @@ train_pipeline = [
max_area_ratio=0.3333333333333333,
fill_color=[103.53, 116.28, 123.675],
fill_std=[57.375, 57.12, 58.395]),
dict(type='PackClsInputs')
dict(type='PackInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile'),
@ -39,7 +39,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs')
dict(type='PackInputs')
]
train_dataloader = dict(batch_size=128, dataset=dict(pipeline=train_pipeline))

View File

@ -1,5 +1,5 @@
_base_ = [
'../../_base_/datasets/imagenet_bs32_pillow.py',
'../../_base_/datasets/imagenet_bs32_pil_resize.py',
'../../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../../_base_/default_runtime.py'
]

View File

@ -29,7 +29,7 @@ train_pipeline = [
max_area_ratio=0.3333333333333333,
fill_color=[103.53, 116.28, 123.675],
fill_std=[57.375, 57.12, 58.395]),
dict(type='PackClsInputs')
dict(type='PackInputs')
]
test_pipeline = [
@ -41,7 +41,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=448),
dict(type='PackClsInputs')
dict(type='PackInputs')
]
train_dataloader = dict(batch_size=128, dataset=dict(pipeline=train_pipeline))

View File

@ -29,7 +29,7 @@ train_pipeline = [
max_area_ratio=0.3333333333333333,
fill_color=[103.53, 116.28, 123.675],
fill_std=[57.375, 57.12, 58.395]),
dict(type='PackClsInputs')
dict(type='PackInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile'),
@ -40,7 +40,7 @@ test_pipeline = [
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs')
dict(type='PackInputs')
]
train_dataloader = dict(batch_size=128, dataset=dict(pipeline=train_pipeline))

Some files were not shown because too many files have changed in this diff Show More