[Fix] Fix swin transformer config (#355)
* Fix config bug in swin * Format config and checkpoint name of swin transformer. * Fix link in model zoopull/341/head^2
parent
d04ebc1eb5
commit
a97ccd5579
|
@ -101,7 +101,7 @@ test_pipeline = [
|
|||
dict(type='Collect', keys=['img'])
|
||||
]
|
||||
data = dict(
|
||||
samples_per_gpu=128,
|
||||
samples_per_gpu=64,
|
||||
workers_per_gpu=8,
|
||||
train=dict(
|
||||
type=dataset_type,
|
|
@ -23,7 +23,7 @@ test_pipeline = [
|
|||
dict(type='Collect', keys=['img'])
|
||||
]
|
||||
data = dict(
|
||||
samples_per_gpu=128,
|
||||
samples_per_gpu=64,
|
||||
workers_per_gpu=8,
|
||||
train=dict(
|
||||
type=dataset_type,
|
|
@ -6,7 +6,7 @@ model = dict(
|
|||
type='SwinTransformer',
|
||||
arch='base',
|
||||
img_size=384,
|
||||
stage_cfg=dict(block_cfg=dict(window_size=12))),
|
||||
stage_cfgs=dict(block_cfgs=dict(window_size=12))),
|
||||
neck=dict(type='GlobalAveragePooling', dim=1),
|
||||
head=dict(
|
||||
type='LinearClsHead',
|
||||
|
|
|
@ -6,7 +6,7 @@ model = dict(
|
|||
type='SwinTransformer',
|
||||
arch='large',
|
||||
img_size=384,
|
||||
stage_cfg=dict(block_cfg=dict(window_size=12))),
|
||||
stage_cfgs=dict(block_cfgs=dict(window_size=12))),
|
||||
neck=dict(type='GlobalAveragePooling', dim=1),
|
||||
head=dict(
|
||||
type='LinearClsHead',
|
||||
|
|
|
@ -36,6 +36,6 @@ The pre-trained modles are converted from [model zoo of Swin Transformer](https:
|
|||
### ImageNet
|
||||
| Model | Pretrain | resolution | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
|
||||
|:---------:|:------------:|:-----------:|:---------:|:---------:|:---------:|:---------:|:----------:|:--------:|
|
||||
| Swin-T | ImageNet-1k | 224x224 | 28.29 | 4.36 | 81.18 | 95.61 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin_tiny_224_imagenet.py) |[model](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_224_imagenet-66df6be6.pth) | [log](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_224_imagenet-66df6be6.log.json)|
|
||||
| Swin-S | ImageNet-1k | 224x224 | 49.61 | 8.52 | 83.02 | 96.29 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin_small_224_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_small_224_imagenet-7f9d988b.pth) | [log](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_small_224_imagenet-7f9d988b.log.json)|
|
||||
| Swin-B | ImageNet-1k | 224x224 | 87.77 | 15.14 | 83.36 | 96.44 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin_base_224_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_base_224_imagenet-93230b0d.pth) | [log](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_base_224_imagenet-93230b0d.log.json)|
|
||||
| Swin-T | ImageNet-1k | 224x224 | 28.29 | 4.36 | 81.18 | 95.61 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin_tiny_224_b16x64_300e_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_224_b16x64_300e_imagenet_20210616_090925-66df6be6.pth) | [log](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_224_b16x64_300e_imagenet_20210616_090925.log.json)|
|
||||
| Swin-S | ImageNet-1k | 224x224 | 49.61 | 8.52 | 83.02 | 96.29 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin_small_224_b16x64_300e_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_small_224_b16x64_300e_imagenet_20210615_110219-7f9d988b.pth) | [log](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_small_224_b16x64_300e_imagenet_20210615_110219.log.json)|
|
||||
| Swin-B | ImageNet-1k | 224x224 | 87.77 | 15.14 | 83.36 | 96.44 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin_base_224_b16x64_300e_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_base_224_b16x64_300e_imagenet_20210616_190742-93230b0d.pth) | [log](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_base_224_b16x64_300e_imagenet_20210616_190742.log.json)|
|
||||
|
|
|
@ -14,7 +14,7 @@ Collections:
|
|||
README: configs/swin_transformer/README.md
|
||||
|
||||
Models:
|
||||
- Config: configs/swin_transformer/swin_tiny_224_imagenet.py
|
||||
- Config: configs/swin_transformer/swin_tiny_224_b16x64_300e_imagenet.py
|
||||
In Collection: Swin-Transformer
|
||||
Metadata:
|
||||
FLOPs: 4360000000
|
||||
|
@ -30,8 +30,8 @@ Models:
|
|||
Top 1 Accuracy: 81.18
|
||||
Top 5 Accuracy: 95.61
|
||||
Task: Image Classification
|
||||
Weights: https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_224_imagenet-66df6be6.pth
|
||||
- Config: configs/swin_transformer/swin_small_224_imagenet.py
|
||||
Weights: https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_224_b16x64_300e_imagenet_20210616_090925-66df6be6.pth
|
||||
- Config: configs/swin_transformer/swin_small_224_b16x64_300e_imagenet.py
|
||||
In Collection: Swin-Transformer
|
||||
Metadata:
|
||||
FLOPs: 8520000000
|
||||
|
@ -47,8 +47,8 @@ Models:
|
|||
Top 1 Accuracy: 83.02
|
||||
Top 5 Accuracy: 96.29
|
||||
Task: Image Classification
|
||||
Weights: https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_small_224_imagenet-7f9d988b.pth
|
||||
- Config: configs/swin_transformer/swin_base_224_imagenet.py
|
||||
Weights: https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_small_224_b16x64_300e_imagenet_20210615_110219-7f9d988b.pth
|
||||
- Config: configs/swin_transformer/swin_base_224_b16x64_300e_imagenet.py
|
||||
In Collection: Swin-Transformer
|
||||
Metadata:
|
||||
FLOPs: 15140000000
|
||||
|
@ -64,4 +64,4 @@ Models:
|
|||
Top 1 Accuracy: 83.36
|
||||
Top 5 Accuracy: 96.44
|
||||
Task: Image Classification
|
||||
Weights: https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_base_224_imagenet-93230b0d.pth
|
||||
Weights: https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_base_224_b16x64_300e_imagenet_20210616_190742-93230b0d.pth
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
_base_ = [
|
||||
'../_base_/models/swin_transformer/base_224.py',
|
||||
'../_base_/datasets/imagenet_bs128_swin_224.py',
|
||||
'../_base_/datasets/imagenet_bs64_swin_224.py',
|
||||
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
|
||||
'../_base_/default_runtime.py'
|
||||
]
|
|
@ -1,7 +1,7 @@
|
|||
# Only for evaluation
|
||||
_base_ = [
|
||||
'../_base_/models/swin_transformer/base_384.py',
|
||||
'../_base_/datasets/imagenet_bs128_swin_384.py',
|
||||
'../_base_/datasets/imagenet_bs64_swin_384.py',
|
||||
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
|
||||
'../_base_/default_runtime.py'
|
||||
]
|
|
@ -1,7 +1,7 @@
|
|||
# Only for evaluation
|
||||
_base_ = [
|
||||
'../_base_/models/swin_transformer/large_224.py',
|
||||
'../_base_/datasets/imagenet_bs128_swin_224.py',
|
||||
'../_base_/datasets/imagenet_bs64_swin_224.py',
|
||||
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
|
||||
'../_base_/default_runtime.py'
|
||||
]
|
|
@ -1,7 +1,7 @@
|
|||
# Only for evaluation
|
||||
_base_ = [
|
||||
'../_base_/models/swin_transformer/large_384.py',
|
||||
'../_base_/datasets/imagenet_bs128_swin_384.py',
|
||||
'../_base_/datasets/imagenet_bs64_swin_384.py',
|
||||
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
|
||||
'../_base_/default_runtime.py'
|
||||
]
|
|
@ -1,6 +1,6 @@
|
|||
_base_ = [
|
||||
'../_base_/models/swin_transformer/small_224.py',
|
||||
'../_base_/datasets/imagenet_bs128_swin_224.py',
|
||||
'../_base_/datasets/imagenet_bs64_swin_224.py',
|
||||
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
|
||||
'../_base_/default_runtime.py'
|
||||
]
|
|
@ -1,6 +1,6 @@
|
|||
_base_ = [
|
||||
'../_base_/models/swin_transformer/tiny_224.py',
|
||||
'../_base_/datasets/imagenet_bs128_swin_224.py',
|
||||
'../_base_/datasets/imagenet_bs64_swin_224.py',
|
||||
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
|
||||
'../_base_/default_runtime.py'
|
||||
]
|
|
@ -40,9 +40,9 @@ The ResNet family models below are trained by standard data augmentations, i.e.,
|
|||
| ViT-B/32* | 88.3 | 8.56 | 81.73 | 96.13 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/vision_transformer/vit_base_patch32_384_finetune_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/vit/vit_base_patch32_384.pth) | [log]() |
|
||||
| ViT-L/16* | 304.72 | 116.68 | 85.08 | 97.38 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/vision_transformer/vit_large_patch16_384_finetune_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/vit/vit_large_patch16_384.pth) | [log]() |
|
||||
| ViT-L/32* | 306.63 | 29.66 | 81.52 | 96.06 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/vision_transformer/vit_large_patch32_384_finetune_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/vit/vit_large_patch32_384.pth) | [log]() |
|
||||
| Swin-Transformer tiny | 28.29 | 4.36 | 81.18 | 95.61 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin_tiny_224_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_224_imagenet-66df6be6.pth) | [log](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_224_imagenet-66df6be6.log.json)|
|
||||
| Swin-Transformer small| 49.61 | 8.52 | 83.02 | 96.29 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin_small_224_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_small_224_imagenet-7f9d988b.pth) | [log](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_small_224_imagenet-7f9d988b.log.json)|
|
||||
| Swin-Transformer base | 87.77 | 15.14 | 83.36 | 96.44 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin_base_224_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_base_224_imagenet-93230b0d.pth) | [log](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_base_224_imagenet-93230b0d.log.json)|
|
||||
| Swin-Transformer tiny | 28.29 | 4.36 | 81.18 | 95.61 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin_tiny_224_b16x64_300e_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_224_b16x64_300e_imagenet_20210616_090925-66df6be6.pth) | [log](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_224_b16x64_300e_imagenet_20210616_090925.log.json)|
|
||||
| Swin-Transformer small| 49.61 | 8.52 | 83.02 | 96.29 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin_small_224_b16x64_300e_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_small_224_b16x64_300e_imagenet_20210615_110219-7f9d988b.pth) | [log](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_small_224_b16x64_300e_imagenet_20210615_110219.log.json)|
|
||||
| Swin-Transformer base | 87.77 | 15.14 | 83.36 | 96.44 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin_base_224_b16x64_300e_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_base_224_b16x64_300e_imagenet_20210616_190742-93230b0d.pth) | [log](https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_base_224_b16x64_300e_imagenet_20210616_190742.log.json)|
|
||||
|
||||
Models with * are converted from other repos, others are trained by ourselves.
|
||||
|
||||
|
|
|
@ -134,7 +134,7 @@ class SwinBlockSequence(BaseModule):
|
|||
drop_paths = [drop_paths] * depth
|
||||
|
||||
if not isinstance(block_cfgs, Sequence):
|
||||
block_cfg = [deepcopy(block_cfgs) for _ in range(depth)]
|
||||
block_cfgs = [deepcopy(block_cfgs) for _ in range(depth)]
|
||||
|
||||
self.blocks = ModuleList()
|
||||
for i in range(depth):
|
||||
|
@ -145,7 +145,7 @@ class SwinBlockSequence(BaseModule):
|
|||
'shift': False if i % 2 == 0 else True,
|
||||
'drop_path': drop_paths[i],
|
||||
'auto_pad': auto_pad,
|
||||
**block_cfg[i]
|
||||
**block_cfgs[i]
|
||||
}
|
||||
block = SwinBlock(**_block_cfg)
|
||||
self.blocks.append(block)
|
||||
|
|
Loading…
Reference in New Issue