using to modify cfg

pull/1727/head
zeyuanyin 2023-07-26 16:59:43 +04:00
parent 4e57d84f68
commit b6117a4c18
12 changed files with 48 additions and 39 deletions

View File

@ -38,7 +38,7 @@ train_dataloader = dict(
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
ann_file='meta/train.txt',
# ann_file='meta/train.txt',
data_prefix='train',
pipeline=train_pipeline),
sampler=dict(type=DefaultSampler, shuffle=True),
@ -50,7 +50,7 @@ val_dataloader = dict(
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
ann_file='meta/val.txt',
# ann_file='meta/val.txt',
data_prefix='val',
pipeline=test_pipeline),
sampler=dict(type=DefaultSampler, shuffle=False),

View File

@ -33,7 +33,7 @@ train_pipeline = [
scale=224,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type=RandomFlip, prob=0.5, direction='horizontal'),
dict(
type=AutoAugment,
policies='imagenet',

View File

@ -40,10 +40,10 @@ model = dict(
]))
# dataset settings
train_dataloader = dict(batch_size=128)
train_dataloader.update(batch_size=128)
# schedule settings
optim_wrapper = dict(
optim_wrapper.update(
optimizer=dict(
type=AdamW,
lr=1e-4 * 4096 / 256,
@ -64,4 +64,4 @@ custom_hooks = [dict(type=EMAHook, momentum=1e-4)]
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
# base_batch_size = (32 GPUs) x (128 samples per GPU)
auto_scale_lr = dict(base_batch_size=4096)
auto_scale_lr.update(base_batch_size=4096)

View File

@ -11,10 +11,10 @@ with read_base():
from .._base_.default_runtime import *
# model setting
model = dict(
model.update(
head=dict(hidden_dim=3072),
train_cfg=dict(augments=dict(type=Mixup, alpha=0.2)),
)
# schedule setting
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
optim_wrapper.update(clip_grad=dict(max_norm=1.0))

View File

@ -16,10 +16,10 @@ with read_base():
# model setting
model = dict(backbone=dict(img_size=384))
model.update(backbone=dict(img_size=384))
# dataset setting
data_preprocessor = dict(
data_preprocessor.update(
mean=[127.5, 127.5, 127.5],
std=[127.5, 127.5, 127.5],
# convert image from BGR to RGB
@ -40,9 +40,9 @@ test_pipeline = [
dict(type=PackInputs),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
train_dataloader.update(dataset=dict(pipeline=train_pipeline))
val_dataloader.update(dataset=dict(pipeline=test_pipeline))
test_dataloader.update(dataset=dict(pipeline=test_pipeline))
# schedule setting
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
optim_wrapper.update(clip_grad=dict(max_norm=1.0))

View File

@ -12,10 +12,10 @@ with read_base():
# model setting
model = dict(
model.update(
head=dict(hidden_dim=3072),
train_cfg=dict(augments=dict(type=Mixup, alpha=0.2)),
)
# schedule setting
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
optim_wrapper.update(clip_grad=dict(max_norm=1.0))

View File

@ -15,10 +15,10 @@ with read_base():
from .._base_.default_runtime import *
# model setting
model = dict(backbone=dict(img_size=384))
model.update(backbone=dict(img_size=384))
# dataset setting
data_preprocessor = dict(
data_preprocessor.update(
mean=[127.5, 127.5, 127.5],
std=[127.5, 127.5, 127.5],
# convert image from BGR to RGB
@ -39,9 +39,9 @@ test_pipeline = [
dict(type=PackInputs),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
train_dataloader.update(dataset=dict(pipeline=train_pipeline))
val_dataloader.update(dataset=dict(pipeline=test_pipeline))
test_dataloader.update(dataset=dict(pipeline=test_pipeline))
# schedule setting
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
optim_wrapper.update(clip_grad=dict(max_norm=1.0))

View File

@ -11,10 +11,10 @@ with read_base():
# model setting
model = dict(
model.update(
head=dict(hidden_dim=3072),
train_cfg=dict(augments=dict(type=Mixup, alpha=0.2)),
)
# schedule setting
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
optim_wrapper.update(clip_grad=dict(max_norm=1.0))

View File

@ -16,10 +16,10 @@ with read_base():
# model setting
model = dict(backbone=dict(img_size=384))
model.update(backbone=dict(img_size=384))
# dataset setting
data_preprocessor = dict(
data_preprocessor.update(
mean=[127.5, 127.5, 127.5],
std=[127.5, 127.5, 127.5],
# convert image from BGR to RGB
@ -40,9 +40,9 @@ test_pipeline = [
dict(type=PackInputs),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
train_dataloader.update(dataset=dict(pipeline=train_pipeline))
val_dataloader.update(dataset=dict(pipeline=test_pipeline))
test_dataloader.update(dataset=dict(pipeline=test_pipeline))
# schedule setting
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
optim_wrapper.update(clip_grad=dict(max_norm=1.0))

View File

@ -10,10 +10,10 @@ with read_base():
from .._base_.default_runtime import *
# model setting
model = dict(
model.update(
head=dict(hidden_dim=3072),
train_cfg=dict(augments=dict(type=Mixup, alpha=0.2)),
)
# schedule setting
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
optim_wrapper.update(clip_grad=dict(max_norm=1.0))

View File

@ -13,7 +13,7 @@ with read_base():
from .._base_.default_runtime import *
# model setting
model = dict(backbone=dict(img_size=384))
model.update(backbone=dict(img_size=384))
# dataset setting
data_preprocessor = dict(
@ -37,9 +37,9 @@ test_pipeline = [
dict(type=PackInputs),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
train_dataloader.update(dataset=dict(pipeline=train_pipeline))
val_dataloader.update(dataset=dict(pipeline=test_pipeline))
test_dataloader.update(dataset=dict(pipeline=test_pipeline))
# schedule setting
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
optim_wrapper.update(clip_grad=dict(max_norm=1.0))

View File

@ -146,8 +146,17 @@ def main():
# load config
cfg = Config.fromfile(args.config)
cfg.train_dataloader.dataset.data_root = 'xyz'
cfg.val_dataloader.dataset.data_root = 'xyz'
# print('default train data root: ', cfg.train_dataloader.dataset.data_root)
# print('default val data root: ', cfg.val_dataloader.dataset.data_root)
cfg.train_dataloader.dataset.data_root = '/home/zeyuan.yin/imagenet'
cfg.val_dataloader.dataset.data_root = '/home/zeyuan.yin/imagenet'
print('dataset cfg', cfg.train_dataloader.dataset)
print('---')
# print('model cfg', cfg.model)
# print('optim_wrapper cfg', cfg.optim_wrapper)
exit()
# merge cli arguments to config
cfg = merge_args(cfg, args)