using to modify cfg
parent
4e57d84f68
commit
b6117a4c18
|
@ -38,7 +38,7 @@ train_dataloader = dict(
|
|||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root='data/imagenet',
|
||||
ann_file='meta/train.txt',
|
||||
# ann_file='meta/train.txt',
|
||||
data_prefix='train',
|
||||
pipeline=train_pipeline),
|
||||
sampler=dict(type=DefaultSampler, shuffle=True),
|
||||
|
@ -50,7 +50,7 @@ val_dataloader = dict(
|
|||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root='data/imagenet',
|
||||
ann_file='meta/val.txt',
|
||||
# ann_file='meta/val.txt',
|
||||
data_prefix='val',
|
||||
pipeline=test_pipeline),
|
||||
sampler=dict(type=DefaultSampler, shuffle=False),
|
||||
|
|
|
@ -33,7 +33,7 @@ train_pipeline = [
|
|||
scale=224,
|
||||
backend='pillow',
|
||||
interpolation='bicubic'),
|
||||
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
||||
dict(type=RandomFlip, prob=0.5, direction='horizontal'),
|
||||
dict(
|
||||
type=AutoAugment,
|
||||
policies='imagenet',
|
||||
|
|
|
@ -40,10 +40,10 @@ model = dict(
|
|||
]))
|
||||
|
||||
# dataset settings
|
||||
train_dataloader = dict(batch_size=128)
|
||||
train_dataloader.update(batch_size=128)
|
||||
|
||||
# schedule settings
|
||||
optim_wrapper = dict(
|
||||
optim_wrapper.update(
|
||||
optimizer=dict(
|
||||
type=AdamW,
|
||||
lr=1e-4 * 4096 / 256,
|
||||
|
@ -64,4 +64,4 @@ custom_hooks = [dict(type=EMAHook, momentum=1e-4)]
|
|||
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
||||
# based on the actual training batch size.
|
||||
# base_batch_size = (32 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=4096)
|
||||
auto_scale_lr.update(base_batch_size=4096)
|
|
@ -11,10 +11,10 @@ with read_base():
|
|||
from .._base_.default_runtime import *
|
||||
|
||||
# model setting
|
||||
model = dict(
|
||||
model.update(
|
||||
head=dict(hidden_dim=3072),
|
||||
train_cfg=dict(augments=dict(type=Mixup, alpha=0.2)),
|
||||
)
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
|
@ -16,10 +16,10 @@ with read_base():
|
|||
|
||||
|
||||
# model setting
|
||||
model = dict(backbone=dict(img_size=384))
|
||||
model.update(backbone=dict(img_size=384))
|
||||
|
||||
# dataset setting
|
||||
data_preprocessor = dict(
|
||||
data_preprocessor.update(
|
||||
mean=[127.5, 127.5, 127.5],
|
||||
std=[127.5, 127.5, 127.5],
|
||||
# convert image from BGR to RGB
|
||||
|
@ -40,9 +40,9 @@ test_pipeline = [
|
|||
dict(type=PackInputs),
|
||||
]
|
||||
|
||||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
train_dataloader.update(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader.update(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader.update(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
|
@ -12,10 +12,10 @@ with read_base():
|
|||
|
||||
|
||||
# model setting
|
||||
model = dict(
|
||||
model.update(
|
||||
head=dict(hidden_dim=3072),
|
||||
train_cfg=dict(augments=dict(type=Mixup, alpha=0.2)),
|
||||
)
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
|
@ -15,10 +15,10 @@ with read_base():
|
|||
from .._base_.default_runtime import *
|
||||
|
||||
# model setting
|
||||
model = dict(backbone=dict(img_size=384))
|
||||
model.update(backbone=dict(img_size=384))
|
||||
|
||||
# dataset setting
|
||||
data_preprocessor = dict(
|
||||
data_preprocessor.update(
|
||||
mean=[127.5, 127.5, 127.5],
|
||||
std=[127.5, 127.5, 127.5],
|
||||
# convert image from BGR to RGB
|
||||
|
@ -39,9 +39,9 @@ test_pipeline = [
|
|||
dict(type=PackInputs),
|
||||
]
|
||||
|
||||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
train_dataloader.update(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader.update(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader.update(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
|
@ -11,10 +11,10 @@ with read_base():
|
|||
|
||||
|
||||
# model setting
|
||||
model = dict(
|
||||
model.update(
|
||||
head=dict(hidden_dim=3072),
|
||||
train_cfg=dict(augments=dict(type=Mixup, alpha=0.2)),
|
||||
)
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
|
@ -16,10 +16,10 @@ with read_base():
|
|||
|
||||
|
||||
# model setting
|
||||
model = dict(backbone=dict(img_size=384))
|
||||
model.update(backbone=dict(img_size=384))
|
||||
|
||||
# dataset setting
|
||||
data_preprocessor = dict(
|
||||
data_preprocessor.update(
|
||||
mean=[127.5, 127.5, 127.5],
|
||||
std=[127.5, 127.5, 127.5],
|
||||
# convert image from BGR to RGB
|
||||
|
@ -40,9 +40,9 @@ test_pipeline = [
|
|||
dict(type=PackInputs),
|
||||
]
|
||||
|
||||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
train_dataloader.update(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader.update(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader.update(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
|
@ -10,10 +10,10 @@ with read_base():
|
|||
from .._base_.default_runtime import *
|
||||
|
||||
# model setting
|
||||
model = dict(
|
||||
model.update(
|
||||
head=dict(hidden_dim=3072),
|
||||
train_cfg=dict(augments=dict(type=Mixup, alpha=0.2)),
|
||||
)
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
|
@ -13,7 +13,7 @@ with read_base():
|
|||
from .._base_.default_runtime import *
|
||||
|
||||
# model setting
|
||||
model = dict(backbone=dict(img_size=384))
|
||||
model.update(backbone=dict(img_size=384))
|
||||
|
||||
# dataset setting
|
||||
data_preprocessor = dict(
|
||||
|
@ -37,9 +37,9 @@ test_pipeline = [
|
|||
dict(type=PackInputs),
|
||||
]
|
||||
|
||||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
train_dataloader.update(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader.update(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader.update(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
|
@ -146,8 +146,17 @@ def main():
|
|||
# load config
|
||||
cfg = Config.fromfile(args.config)
|
||||
|
||||
cfg.train_dataloader.dataset.data_root = 'xyz'
|
||||
cfg.val_dataloader.dataset.data_root = 'xyz'
|
||||
# print('default train data root: ', cfg.train_dataloader.dataset.data_root)
|
||||
# print('default val data root: ', cfg.val_dataloader.dataset.data_root)
|
||||
|
||||
cfg.train_dataloader.dataset.data_root = '/home/zeyuan.yin/imagenet'
|
||||
cfg.val_dataloader.dataset.data_root = '/home/zeyuan.yin/imagenet'
|
||||
|
||||
print('dataset cfg', cfg.train_dataloader.dataset)
|
||||
print('---')
|
||||
# print('model cfg', cfg.model)
|
||||
# print('optim_wrapper cfg', cfg.optim_wrapper)
|
||||
exit()
|
||||
|
||||
# merge cli arguments to config
|
||||
cfg = merge_args(cfg, args)
|
||||
|
|
Loading…
Reference in New Issue