add mobilenetv2

pull/2/head
louzan 2020-05-28 11:24:04 +08:00
parent 6515bb999c
commit ba391c029a
1 changed files with 275 additions and 0 deletions

View File

@ -0,0 +1,275 @@
import logging
import torch.nn as nn
import torch.utils.checkpoint as cp
from ..runner import load_checkpoint
from .base_backbone import BaseBackbone
from .weight_init import constant_init, kaiming_init
def conv3x3(in_planes, out_planes, stride=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=dilation,
dilation=dilation,
bias=False)
def conv_1x1_bn(inp, oup, act=nn.ReLU6):
return nn.Sequential(
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
act(inplace=True)
)
class ConvBNReLU(nn.Sequential):
def __init__(self,
in_planes,
out_planes,
kernel_size=3,
stride=1,
groups=1,
activation=nn.ReLU6):
padding = (kernel_size - 1) // 2
try:
self.activation = activation(inplace=True)
except RuntimeWarning('inplace is not allowed to use'):
self.activation = activation()
super(ConvBNReLU, self).__init__(
nn.Conv2d(in_planes,
out_planes,
kernel_size,
stride,
padding,
groups=groups,
bias=False),
nn.BatchNorm2d(out_planes),
self.activation
)
def _make_divisible(v, divisor, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class InvertedResidual(nn.Module):
def __init__(self,
inplanes,
outplanes,
stride,
expand_ratio,
activation=nn.ReLU6,
with_cp=False):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
self.with_cp = with_cp
self.use_res_connect = self.stride == 1 and inplanes == outplanes
hidden_dim = int(round(inplanes * expand_ratio))
layers = []
if expand_ratio != 1:
# pw
layers.append(ConvBNReLU(inplanes,
hidden_dim,
kernel_size=1,
activation=activation))
layers.extend([
# dw
ConvBNReLU(hidden_dim,
hidden_dim,
stride=stride,
groups=hidden_dim,
activation=activation),
# pw-linear
nn.Conv2d(hidden_dim, outplanes, 1, 1, 0, bias=False),
nn.BatchNorm2d(outplanes),
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
def _inner_forward(x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
return out
def make_inverted_res_layer(block,
inplanes,
planes,
num_blocks,
stride=1,
expand_ratio=6,
activation_type=nn.ReLU6,
with_cp=False):
layers = []
for i in range(num_blocks):
if i == 0:
layers.append(block(inplanes, planes, stride,
expand_ratio=expand_ratio,
activation=activation_type,
with_cp=with_cp))
else:
layers.append(block(inplanes, planes, 1,
expand_ratio=expand_ratio,
activation=activation_type,
with_cp=with_cp))
return nn.Sequential(*layers)
class MobileNetv2(BaseBackbone):
"""MobileNetv2 backbone.
Args:
widen_factor (float): Config of widen_factor.
activation (str): Activation type of the network.
out_indices (Sequence[int]): Output from which stages.
frozen_stages (int): Stages to be frozen (all param fixed). -1 means
not freezing any parameters.
bn_eval (bool): Whether to set BN layers as eval mode, namely, freeze
running stats (mean and var).
bn_frozen (bool): Whether to freeze weight and bias of BN layers.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed.
"""
def __init__(self,
widen_factor=1.,
activation=nn.ReLU6,
out_indices=(0, 1, 2, 3, 4, 5, 6),
frozen_stages=-1,
bn_eval=True,
bn_frozen=False,
with_cp=False):
super(MobileNetv2, self).__init__()
block = InvertedResidual
inverted_residual_setting = {
# lager_index: [expand_ratio, out_channel, n, stide]
0: [1, 16, 1, 1],
1: [6, 24, 2, 2],
2: [6, 32, 3, 2],
3: [6, 64, 4, 2],
4: [6, 96, 3, 1],
5: [6, 160, 3, 2],
6: [6, 320, 1, 1]
}
self.widen_factor = widen_factor
self.activation_type = activation
try:
self.activation = activation(inplace=True)
except RuntimeWarning('inplace is not allowed to use'):
self.activation = activation()
self.out_indices = out_indices
self.frozen_stages = frozen_stages
self.bn_eval = bn_eval
self.bn_frozen = bn_frozen
self.with_cp = with_cp
self.inplanes = 32
self.inplanes = _make_divisible(self.inplanes * widen_factor, 8)
self.conv1 = conv3x3(3, self.inplanes, stride=2)
self.inverted_res_layers = []
for i, later_cfg in enumerate(inverted_residual_setting):
t, c, n, s = later_cfg
planes = _make_divisible(c * widen_factor, 8)
inverted_res_layer = make_inverted_res_layer(
block,
self.inplanes,
planes,
num_blocks=n,
stride=s,
expand_ratio=t,
activation_type=self.activation_type,
with_cp=self.with_cp)
self.inplanes = planes
layer_name = 'layer{}'.format(i + 1)
self.add_module(layer_name, inverted_res_layer)
self.inverted_res_layers.append(layer_name)
self.out_channel = 1280
self.out_channel = int(self.out_channel * widen_factor) \
if widen_factor > 1.0 else self.out_channel
self.conv1_bn = conv_1x1_bn(self.inplanes, self.out_channel)
self.feat_dim = self.out_channel
def init_weights(self, pretrained=None):
if isinstance(pretrained, str):
logger = logging.getLogger()
load_checkpoint(self, pretrained, strict=False, logger=logger)
elif pretrained is None:
for m in self.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, nn.BatchNorm2d):
constant_init(m, 1)
else:
raise TypeError('pretrained must be a str or None')
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.activation(x)
outs = []
for i, layer_name in enumerate(self.inverted_res_layers):
inverted_res_layer = getattr(self, layer_name)
x = inverted_res_layer(x)
if i in self.out_indices:
outs.append(x)
x = self.conv1_bn(x)
outs.append(x)
if len(outs) == 1:
return outs[0]
else:
return tuple(outs)
def train(self, mode=True):
super(MobileNetv2, self).train(mode)
if self.bn_eval:
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
if self.bn_frozen:
for params in m.parameters():
params.requires_grad = False
if mode and self.frozen_stages >= 0:
for param in self.conv1.parameters():
param.requires_grad = False
for param in self.bn1.parameters():
param.requires_grad = False
self.bn1.eval()
self.bn1.weight.requires_grad = False
self.bn1.bias.requires_grad = False
for i in range(1, self.frozen_stages + 1):
mod = getattr(self, 'layer{}'.format(i))
mod.eval()
for param in mod.parameters():
param.requires_grad = False