[Feature] Support MobileViT backbone. (#1068)
* init * fix * add config * add meta * add unittest * fix for comments * Imporvee docstring and support custom arch. * Update README * Update windows CI Co-authored-by: mzr1996 <mzr1996@163.com>pull/1125/head
parent
29f066f7fb
commit
bcca619066
|
@ -71,7 +71,7 @@ jobs:
|
|||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Upgrade pip
|
||||
run: pip install pip --upgrade
|
||||
run: python -m pip install pip --upgrade
|
||||
- name: Install PyTorch
|
||||
run: pip install torch==1.8.2+${{matrix.platform}} torchvision==0.9.2+${{matrix.platform}} -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html
|
||||
- name: Install mmcls dependencies
|
||||
|
|
|
@ -148,6 +148,7 @@ Results and models are available in the [model zoo](https://mmclassification.rea
|
|||
- [x] [MobileOne](https://github.com/open-mmlab/mmclassification/tree/1.x/configs/mobileone)
|
||||
- [x] [EfficientFormer](https://github.com/open-mmlab/mmclassification/tree/1.x/configs/efficientformer)
|
||||
- [x] [MViT](https://github.com/open-mmlab/mmclassification/tree/1.x/configs/mvit)
|
||||
- [x] [MobileViT](https://github.com/open-mmlab/mmclassification/tree/1.x/configs/mobilevit)
|
||||
|
||||
</details>
|
||||
|
||||
|
|
|
@ -147,6 +147,7 @@ mim install -e .
|
|||
- [x] [MobileOne](https://github.com/open-mmlab/mmclassification/tree/1.x/configs/mobileone)
|
||||
- [x] [EfficientFormer](https://github.com/open-mmlab/mmclassification/tree/1.x/configs/efficientformer)
|
||||
- [x] [MViT](https://github.com/open-mmlab/mmclassification/tree/1.x/configs/mvit)
|
||||
- [x] [MobileViT](https://github.com/open-mmlab/mmclassification/tree/1.x/configs/mobilevit)
|
||||
|
||||
</details>
|
||||
|
||||
|
|
|
@ -0,0 +1,12 @@
|
|||
# model settings
|
||||
model = dict(
|
||||
type='ImageClassifier',
|
||||
backbone=dict(type='MobileViT', arch='small'),
|
||||
neck=dict(type='GlobalAveragePooling'),
|
||||
head=dict(
|
||||
type='LinearClsHead',
|
||||
num_classes=1000,
|
||||
in_channels=640,
|
||||
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
|
||||
topk=(1, 5),
|
||||
))
|
|
@ -0,0 +1,12 @@
|
|||
# model settings
|
||||
model = dict(
|
||||
type='ImageClassifier',
|
||||
backbone=dict(type='MobileViT', arch='x_small'),
|
||||
neck=dict(type='GlobalAveragePooling'),
|
||||
head=dict(
|
||||
type='LinearClsHead',
|
||||
num_classes=1000,
|
||||
in_channels=384,
|
||||
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
|
||||
topk=(1, 5),
|
||||
))
|
|
@ -0,0 +1,12 @@
|
|||
# model settings
|
||||
model = dict(
|
||||
type='ImageClassifier',
|
||||
backbone=dict(type='MobileViT', arch='xx_small'),
|
||||
neck=dict(type='GlobalAveragePooling'),
|
||||
head=dict(
|
||||
type='LinearClsHead',
|
||||
num_classes=1000,
|
||||
in_channels=320,
|
||||
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
|
||||
topk=(1, 5),
|
||||
))
|
|
@ -0,0 +1,36 @@
|
|||
# MobileVit
|
||||
|
||||
> [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178)
|
||||
|
||||
<!-- [ALGORITHM] -->
|
||||
|
||||
## Abstract
|
||||
|
||||
Light-weight convolutional neural networks (CNNs) are the de-facto for mobile vision tasks. Their spatial inductive biases allow them to learn representations with fewer parameters across different vision tasks. However, these networks are spatially local. To learn global representations, self-attention-based vision trans-formers (ViTs) have been adopted. Unlike CNNs, ViTs are heavy-weight. In this paper, we ask the following question: is it possible to combine the strengths of CNNs and ViTs to build a light-weight and low latency network for mobile vision tasks? Towards this end, we introduce MobileViT, a light-weight and general-purpose vision transformer for mobile devices. MobileViT presents a different perspective for the global processing of information with transformers, i.e., transformers as convolutions. Our results show that MobileViT significantly outperforms CNN- and ViT-based networks across different tasks and datasets. On the ImageNet-1k dataset, MobileViT achieves top-1 accuracy of 78.4% with about 6 million parameters, which is 3.2% and 6.2% more accurate than MobileNetv3 (CNN-based) and DeIT (ViT-based) for a similar number of parameters. On the MS-COCO object detection task, MobileViT is 5.7% more accurate than MobileNetv3 for a similar number of parameters.
|
||||
|
||||
<div align=center>
|
||||
<img src="https://user-images.githubusercontent.com/42952108/193229983-822bf025-89a6-4d95-b6be-76b7f1a62f2c.png" width="70%"/>
|
||||
</div>
|
||||
|
||||
## Results and models
|
||||
|
||||
### ImageNet-1k
|
||||
|
||||
| Model | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
|
||||
| :-----------------: | :-------: | :------: | :-------: | :-------: | :------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
|
||||
| MobileViT-XXSmall\* | 1.27 | 0.42 | 69.02 | 88.91 | [config](./mobilevit-xxsmall_8xb128_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/mobilevit/mobilevit-xxsmall_3rdparty_in1k_20221018-77835605.pth) |
|
||||
| MobileViT-XSmall\* | 2.32 | 1.05 | 74.75 | 92.32 | [config](./mobilevit-xsmall_8xb128_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/mobilevit/mobilevit-xsmall_3rdparty_in1k_20221018-be39a6e7.pth) |
|
||||
| MobileViT-Small\* | 5.58 | 2.03 | 78.25 | 94.09 | [config](./mobilevit-small_8xb128_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/mobilevit/mobilevit-small_3rdparty_in1k_20221018-cb4f741c.pth) |
|
||||
|
||||
*Models with * are converted from [ml-cvnets](https://github.com/apple/ml-cvnets). The config files of these models are only for validation. We don't ensure these config files' training accuracy and welcome you to contribute your reproduction results.*
|
||||
|
||||
## Citation
|
||||
|
||||
```
|
||||
@article{mehta2021mobilevit,
|
||||
title={MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer},
|
||||
author={Mehta, Sachin and Rastegari, Mohammad},
|
||||
journal={arXiv preprint arXiv:2110.02178},
|
||||
year={2021}
|
||||
}
|
||||
```
|
|
@ -0,0 +1,60 @@
|
|||
Collections:
|
||||
- Name: MobileViT
|
||||
Metadata:
|
||||
Training Data: ImageNet-1k
|
||||
Architecture:
|
||||
- MobileViT Block
|
||||
Paper:
|
||||
URL: https://arxiv.org/abs/2110.02178
|
||||
Title: MobileViT Light-weight, General-purpose, and Mobile-friendly Vision Transformer
|
||||
README: configs/mobilevit/README.md
|
||||
|
||||
Models:
|
||||
- Name: mobilevit-small_3rdparty_in1k
|
||||
Metadata:
|
||||
FLOPs: 2030000000
|
||||
Parameters: 5580000
|
||||
In Collection: MobileViT
|
||||
Results:
|
||||
- Dataset: ImageNet-1k
|
||||
Metrics:
|
||||
Top 1 Accuracy: 78.25
|
||||
Top 5 Accuracy: 94.09
|
||||
Task: Image Classification
|
||||
Weights: https://download.openmmlab.com/mmclassification/v0/mobilevit/mobilevit-small_3rdparty_in1k_20221018-cb4f741c.pth
|
||||
Config: configs/mobilevit/mobilevit-small_8xb128_in1k.py
|
||||
Converted From:
|
||||
Weights: https://docs-assets.developer.apple.com/ml-research/models/cvnets/classification/mobilevit_s.pt
|
||||
Code: https://github.com/apple/ml-cvnets
|
||||
- Name: mobilevit-xsmall_3rdparty_in1k
|
||||
Metadata:
|
||||
FLOPs: 1050000000
|
||||
Parameters: 2320000
|
||||
In Collection: MobileViT
|
||||
Results:
|
||||
- Dataset: ImageNet-1k
|
||||
Metrics:
|
||||
Top 1 Accuracy: 74.75
|
||||
Top 5 Accuracy: 92.32
|
||||
Task: Image Classification
|
||||
Weights: https://download.openmmlab.com/mmclassification/v0/mobilevit/mobilevit-xsmall_3rdparty_in1k_20221018-be39a6e7.pth
|
||||
Config: configs/mobilevit/mobilevit-xsmall_8xb128_in1k.py
|
||||
Converted From:
|
||||
Weights: https://docs-assets.developer.apple.com/ml-research/models/cvnets/classification/mobilevit_xs.pt
|
||||
Code: https://github.com/apple/ml-cvnets
|
||||
- Name: mobilevit-xxsmall_3rdparty_in1k
|
||||
Metadata:
|
||||
FLOPs: 420000000
|
||||
Parameters: 1270000
|
||||
In Collection: MobileViT
|
||||
Results:
|
||||
- Dataset: ImageNet-1k
|
||||
Metrics:
|
||||
Top 1 Accuracy: 69.02
|
||||
Top 5 Accuracy: 88.91
|
||||
Task: Image Classification
|
||||
Weights: https://download.openmmlab.com/mmclassification/v0/mobilevit/mobilevit-xxsmall_3rdparty_in1k_20221018-77835605.pth
|
||||
Config: configs/mobilevit/mobilevit-xxsmall_8xb128_in1k.py
|
||||
Converted From:
|
||||
Weights: https://docs-assets.developer.apple.com/ml-research/models/cvnets/classification/mobilevit_xxs.pt
|
||||
Code: https://github.com/apple/ml-cvnets
|
|
@ -0,0 +1,30 @@
|
|||
_base_ = [
|
||||
'../_base_/models/mobilevit/mobilevit_s.py',
|
||||
'../_base_/datasets/imagenet_bs32.py',
|
||||
'../_base_/default_runtime.py',
|
||||
'../_base_/schedules/imagenet_bs256.py',
|
||||
]
|
||||
|
||||
# no normalize for original implements
|
||||
data_preprocessor = dict(
|
||||
# RGB format normalization parameters
|
||||
mean=[0, 0, 0],
|
||||
std=[255, 255, 255],
|
||||
# use bgr directly
|
||||
to_rgb=False,
|
||||
)
|
||||
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='ResizeEdge', scale=288, edge='short'),
|
||||
dict(type='CenterCrop', crop_size=256),
|
||||
dict(type='PackClsInputs'),
|
||||
]
|
||||
|
||||
train_dataloader = dict(batch_size=128)
|
||||
|
||||
val_dataloader = dict(
|
||||
batch_size=128,
|
||||
dataset=dict(pipeline=test_pipeline),
|
||||
)
|
||||
test_dataloader = val_dataloader
|
|
@ -0,0 +1,30 @@
|
|||
_base_ = [
|
||||
'../_base_/models/mobilevit/mobilevit_xs.py',
|
||||
'../_base_/datasets/imagenet_bs32.py',
|
||||
'../_base_/default_runtime.py',
|
||||
'../_base_/schedules/imagenet_bs256.py',
|
||||
]
|
||||
|
||||
# no normalize for original implements
|
||||
data_preprocessor = dict(
|
||||
# RGB format normalization parameters
|
||||
mean=[0, 0, 0],
|
||||
std=[255, 255, 255],
|
||||
# use bgr directly
|
||||
to_rgb=False,
|
||||
)
|
||||
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='ResizeEdge', scale=288, edge='short'),
|
||||
dict(type='CenterCrop', crop_size=256),
|
||||
dict(type='PackClsInputs'),
|
||||
]
|
||||
|
||||
train_dataloader = dict(batch_size=128)
|
||||
|
||||
val_dataloader = dict(
|
||||
batch_size=128,
|
||||
dataset=dict(pipeline=test_pipeline),
|
||||
)
|
||||
test_dataloader = val_dataloader
|
|
@ -0,0 +1,30 @@
|
|||
_base_ = [
|
||||
'../_base_/models/mobilevit/mobilevit_xxs.py',
|
||||
'../_base_/datasets/imagenet_bs32.py',
|
||||
'../_base_/default_runtime.py',
|
||||
'../_base_/schedules/imagenet_bs256.py',
|
||||
]
|
||||
|
||||
# no normalize for original implements
|
||||
data_preprocessor = dict(
|
||||
# RGB format normalization parameters
|
||||
mean=[0, 0, 0],
|
||||
std=[255, 255, 255],
|
||||
# use bgr directly
|
||||
to_rgb=False,
|
||||
)
|
||||
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='ResizeEdge', scale=288, edge='short'),
|
||||
dict(type='CenterCrop', crop_size=256),
|
||||
dict(type='PackClsInputs'),
|
||||
]
|
||||
|
||||
train_dataloader = dict(batch_size=128)
|
||||
|
||||
val_dataloader = dict(
|
||||
batch_size=128,
|
||||
dataset=dict(pipeline=test_pipeline),
|
||||
)
|
||||
test_dataloader = val_dataloader
|
|
@ -0,0 +1,12 @@
|
|||
# model settings
|
||||
model = dict(
|
||||
type='ImageClassifier',
|
||||
backbone=dict(type='MobileViT', arch='small'),
|
||||
neck=dict(type='GlobalAveragePooling'),
|
||||
head=dict(
|
||||
type='LinearClsHead',
|
||||
num_classes=1000,
|
||||
in_channels=640,
|
||||
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
|
||||
topk=(1, 5),
|
||||
))
|
|
@ -63,12 +63,12 @@ Backbones
|
|||
Conformer
|
||||
ConvMixer
|
||||
ConvNeXt
|
||||
DenseNet
|
||||
DeiT3
|
||||
DenseNet
|
||||
DistilledVisionTransformer
|
||||
EdgeNeXt
|
||||
EfficientFormer
|
||||
EfficientNet
|
||||
EdgeNeXt
|
||||
HRNet
|
||||
InceptionV3
|
||||
LeNet5
|
||||
|
@ -77,6 +77,7 @@ Backbones
|
|||
MobileNetV2
|
||||
MobileNetV3
|
||||
MobileOne
|
||||
MobileViT
|
||||
PCPVT
|
||||
PoolFormer
|
||||
RegNet
|
||||
|
|
|
@ -17,6 +17,7 @@ from .mlp_mixer import MlpMixer
|
|||
from .mobilenet_v2 import MobileNetV2
|
||||
from .mobilenet_v3 import MobileNetV3
|
||||
from .mobileone import MobileOne
|
||||
from .mobilevit import MobileViT
|
||||
from .mvit import MViT
|
||||
from .poolformer import PoolFormer
|
||||
from .regnet import RegNet
|
||||
|
@ -89,4 +90,5 @@ __all__ = [
|
|||
'SwinTransformerV2',
|
||||
'MViT',
|
||||
'DeiT3',
|
||||
'MobileViT',
|
||||
]
|
||||
|
|
|
@ -0,0 +1,431 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import math
|
||||
from typing import Callable, Optional, Sequence
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from mmcv.cnn import ConvModule, build_norm_layer
|
||||
from mmengine.registry import MODELS
|
||||
from torch import nn
|
||||
|
||||
from .base_backbone import BaseBackbone
|
||||
from .mobilenet_v2 import InvertedResidual
|
||||
from .vision_transformer import TransformerEncoderLayer
|
||||
|
||||
|
||||
class MobileVitBlock(nn.Module):
|
||||
"""MobileViT block.
|
||||
|
||||
According to the paper, the MobileViT block has a local representation.
|
||||
a transformer-as-convolution layer which consists of a global
|
||||
representation with unfolding and folding, and a final fusion layer.
|
||||
|
||||
Args:
|
||||
in_channels (int): Number of input image channels.
|
||||
transformer_dim (int): Number of transformer channels.
|
||||
ffn_dim (int): Number of ffn channels in transformer block.
|
||||
out_channels (int): Number of channels in output.
|
||||
conv_ksize (int): Conv kernel size in local representation
|
||||
and fusion. Defaults to 3.
|
||||
conv_cfg (dict, optional): Config dict for convolution layer.
|
||||
Defaults to None, which means using conv2d.
|
||||
norm_cfg (dict, optional): Config dict for normalization layer.
|
||||
Defaults to dict(type='BN').
|
||||
act_cfg (dict, optional): Config dict for activation layer.
|
||||
Defaults to dict(type='Swish').
|
||||
num_transformer_blocks (int): Number of transformer blocks in
|
||||
a MobileViT block. Defaults to 2.
|
||||
patch_size (int): Patch size for unfolding and folding.
|
||||
Defaults to 2.
|
||||
num_heads (int): Number of heads in global representation.
|
||||
Defaults to 4.
|
||||
drop_rate (float): Probability of an element to be zeroed
|
||||
after the feed forward layer. Defaults to 0.
|
||||
attn_drop_rate (float): The drop out rate for attention output weights.
|
||||
Defaults to 0.
|
||||
drop_path_rate (float): Stochastic depth rate. Defaults to 0.
|
||||
no_fusion (bool): Whether to remove the fusion layer.
|
||||
Defaults to False.
|
||||
transformer_norm_cfg (dict, optional): Config dict for normalization
|
||||
layer in transformer. Defaults to dict(type='LN').
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
transformer_dim: int,
|
||||
ffn_dim: int,
|
||||
out_channels: int,
|
||||
conv_ksize: int = 3,
|
||||
conv_cfg: Optional[dict] = None,
|
||||
norm_cfg: Optional[dict] = dict(type='BN'),
|
||||
act_cfg: Optional[dict] = dict(type='Swish'),
|
||||
num_transformer_blocks: int = 2,
|
||||
patch_size: int = 2,
|
||||
num_heads: int = 4,
|
||||
drop_rate: float = 0.,
|
||||
attn_drop_rate: float = 0.,
|
||||
drop_path_rate: float = 0.,
|
||||
no_fusion: bool = False,
|
||||
transformer_norm_cfg: Callable = dict(type='LN'),
|
||||
):
|
||||
super(MobileVitBlock, self).__init__()
|
||||
|
||||
self.local_rep = nn.Sequential(
|
||||
ConvModule(
|
||||
in_channels=in_channels,
|
||||
out_channels=in_channels,
|
||||
kernel_size=conv_ksize,
|
||||
padding=int((conv_ksize - 1) / 2),
|
||||
conv_cfg=conv_cfg,
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=act_cfg),
|
||||
ConvModule(
|
||||
in_channels=in_channels,
|
||||
out_channels=transformer_dim,
|
||||
kernel_size=1,
|
||||
bias=False,
|
||||
conv_cfg=conv_cfg,
|
||||
norm_cfg=None,
|
||||
act_cfg=None),
|
||||
)
|
||||
|
||||
global_rep = [
|
||||
TransformerEncoderLayer(
|
||||
embed_dims=transformer_dim,
|
||||
num_heads=num_heads,
|
||||
feedforward_channels=ffn_dim,
|
||||
drop_rate=drop_rate,
|
||||
attn_drop_rate=attn_drop_rate,
|
||||
drop_path_rate=drop_path_rate,
|
||||
qkv_bias=True,
|
||||
act_cfg=dict(type='Swish'),
|
||||
norm_cfg=transformer_norm_cfg)
|
||||
for _ in range(num_transformer_blocks)
|
||||
]
|
||||
global_rep.append(
|
||||
build_norm_layer(transformer_norm_cfg, transformer_dim)[1])
|
||||
self.global_rep = nn.Sequential(*global_rep)
|
||||
|
||||
self.conv_proj = ConvModule(
|
||||
in_channels=transformer_dim,
|
||||
out_channels=out_channels,
|
||||
kernel_size=1,
|
||||
conv_cfg=conv_cfg,
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=act_cfg)
|
||||
|
||||
if no_fusion:
|
||||
self.conv_fusion = None
|
||||
else:
|
||||
self.conv_fusion = ConvModule(
|
||||
in_channels=in_channels + out_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=conv_ksize,
|
||||
padding=int((conv_ksize - 1) / 2),
|
||||
conv_cfg=conv_cfg,
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=act_cfg)
|
||||
|
||||
self.patch_size = (patch_size, patch_size)
|
||||
self.patch_area = self.patch_size[0] * self.patch_size[1]
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
shortcut = x
|
||||
|
||||
# Local representation
|
||||
x = self.local_rep(x)
|
||||
|
||||
# Unfold (feature map -> patches)
|
||||
patch_h, patch_w = self.patch_size
|
||||
B, C, H, W = x.shape
|
||||
new_h, new_w = math.ceil(H / patch_h) * patch_h, math.ceil(
|
||||
W / patch_w) * patch_w
|
||||
num_patch_h, num_patch_w = new_h // patch_h, new_w // patch_w # n_h, n_w # noqa
|
||||
num_patches = num_patch_h * num_patch_w # N
|
||||
interpolate = False
|
||||
if new_h != H or new_w != W:
|
||||
# Note: Padding can be done, but then it needs to be handled in attention function. # noqa
|
||||
x = F.interpolate(
|
||||
x, size=(new_h, new_w), mode='bilinear', align_corners=False)
|
||||
interpolate = True
|
||||
|
||||
# [B, C, H, W] --> [B * C * n_h, n_w, p_h, p_w]
|
||||
x = x.reshape(B * C * num_patch_h, patch_h, num_patch_w,
|
||||
patch_w).transpose(1, 2)
|
||||
# [B * C * n_h, n_w, p_h, p_w] --> [BP, N, C] where P = p_h * p_w and N = n_h * n_w # noqa
|
||||
x = x.reshape(B, C, num_patches,
|
||||
self.patch_area).transpose(1, 3).reshape(
|
||||
B * self.patch_area, num_patches, -1)
|
||||
|
||||
# Global representations
|
||||
x = self.global_rep(x)
|
||||
|
||||
# Fold (patch -> feature map)
|
||||
# [B, P, N, C] --> [B*C*n_h, n_w, p_h, p_w]
|
||||
x = x.contiguous().view(B, self.patch_area, num_patches, -1)
|
||||
x = x.transpose(1, 3).reshape(B * C * num_patch_h, num_patch_w,
|
||||
patch_h, patch_w)
|
||||
# [B*C*n_h, n_w, p_h, p_w] --> [B*C*n_h, p_h, n_w, p_w] --> [B, C, H, W] # noqa
|
||||
x = x.transpose(1, 2).reshape(B, C, num_patch_h * patch_h,
|
||||
num_patch_w * patch_w)
|
||||
if interpolate:
|
||||
x = F.interpolate(
|
||||
x, size=(H, W), mode='bilinear', align_corners=False)
|
||||
|
||||
x = self.conv_proj(x)
|
||||
if self.conv_fusion is not None:
|
||||
x = self.conv_fusion(torch.cat((shortcut, x), dim=1))
|
||||
return x
|
||||
|
||||
|
||||
@MODELS.register_module()
|
||||
class MobileViT(BaseBackbone):
|
||||
"""MobileViT backbone.
|
||||
|
||||
A PyTorch implementation of : `MobileViT: Light-weight, General-purpose,
|
||||
and Mobile-friendly Vision Transformer <https://arxiv.org/pdf/2110.02178.pdf>`_
|
||||
|
||||
Modified from the `official repo
|
||||
<https://github.com/apple/ml-cvnets/blob/main/cvnets/models/classification/mobilevit.py>`_
|
||||
and `timm
|
||||
<https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/mobilevit.py>`_.
|
||||
|
||||
Args:
|
||||
arch (str | List[list]): Architecture of MobileViT.
|
||||
|
||||
- If a string, choose from "small", "x_small" and "xx_small".
|
||||
|
||||
- If a list, every item should be also a list, and the first item
|
||||
of the sub-list can be chosen from "moblienetv2" and "mobilevit",
|
||||
which indicates the type of this layer sequence. If "mobilenetv2",
|
||||
the other items are the arguments of :attr:`~MobileViT.make_mobilenetv2_layer`
|
||||
(except ``in_channels``) and if "mobilevit", the other items are
|
||||
the arguments of :attr:`~MobileViT.make_mobilevit_layer`
|
||||
(except ``in_channels``).
|
||||
|
||||
Defaults to "small".
|
||||
in_channels (int): Number of input image channels. Defaults to 3.
|
||||
stem_channels (int): Channels of stem layer. Defaults to 16.
|
||||
last_exp_factor (int): Channels expand factor of last layer.
|
||||
Defaults to 4.
|
||||
out_indices (Sequence[int]): Output from which stages.
|
||||
Defaults to (4, ).
|
||||
frozen_stages (int): Stages to be frozen (all param fixed).
|
||||
Defaults to -1, which means not freezing any parameters.
|
||||
conv_cfg (dict, optional): Config dict for convolution layer.
|
||||
Defaults to None, which means using conv2d.
|
||||
norm_cfg (dict, optional): Config dict for normalization layer.
|
||||
Defaults to dict(type='BN').
|
||||
act_cfg (dict, optional): Config dict for activation layer.
|
||||
Defaults to dict(type='Swish').
|
||||
init_cfg (dict, optional): Initialization config dict.
|
||||
""" # noqa
|
||||
|
||||
# Parameters to build layers. The first param is the type of layer.
|
||||
# For `mobilenetv2` layer, the rest params from left to right are:
|
||||
# out channels, stride, num of blocks, expand_ratio.
|
||||
# For `mobilevit` layer, the rest params from left to right are:
|
||||
# out channels, stride, transformer_channels, ffn channels,
|
||||
# num of transformer blocks, expand_ratio.
|
||||
arch_settings = {
|
||||
'small': [
|
||||
['mobilenetv2', 32, 1, 1, 4],
|
||||
['mobilenetv2', 64, 2, 3, 4],
|
||||
['mobilevit', 96, 2, 144, 288, 2, 4],
|
||||
['mobilevit', 128, 2, 192, 384, 4, 4],
|
||||
['mobilevit', 160, 2, 240, 480, 3, 4],
|
||||
],
|
||||
'x_small': [
|
||||
['mobilenetv2', 32, 1, 1, 4],
|
||||
['mobilenetv2', 48, 2, 3, 4],
|
||||
['mobilevit', 64, 2, 96, 192, 2, 4],
|
||||
['mobilevit', 80, 2, 120, 240, 4, 4],
|
||||
['mobilevit', 96, 2, 144, 288, 3, 4],
|
||||
],
|
||||
'xx_small': [
|
||||
['mobilenetv2', 16, 1, 1, 2],
|
||||
['mobilenetv2', 24, 2, 3, 2],
|
||||
['mobilevit', 48, 2, 64, 128, 2, 2],
|
||||
['mobilevit', 64, 2, 80, 160, 4, 2],
|
||||
['mobilevit', 80, 2, 96, 192, 3, 2],
|
||||
]
|
||||
}
|
||||
|
||||
def __init__(self,
|
||||
arch='small',
|
||||
in_channels=3,
|
||||
stem_channels=16,
|
||||
last_exp_factor=4,
|
||||
out_indices=(4, ),
|
||||
frozen_stages=-1,
|
||||
conv_cfg=None,
|
||||
norm_cfg=dict(type='BN'),
|
||||
act_cfg=dict(type='Swish'),
|
||||
init_cfg=[
|
||||
dict(type='Kaiming', layer=['Conv2d']),
|
||||
dict(
|
||||
type='Constant',
|
||||
val=1,
|
||||
layer=['_BatchNorm', 'GroupNorm'])
|
||||
]):
|
||||
super(MobileViT, self).__init__(init_cfg)
|
||||
if isinstance(arch, str):
|
||||
arch = arch.lower()
|
||||
assert arch in self.arch_settings, \
|
||||
f'Unavailable arch, please choose from ' \
|
||||
f'({set(self.arch_settings)}) or pass a list.'
|
||||
arch = self.arch_settings[arch]
|
||||
|
||||
self.arch = arch
|
||||
self.num_stages = len(arch)
|
||||
|
||||
# check out indices and frozen stages
|
||||
if isinstance(out_indices, int):
|
||||
out_indices = [out_indices]
|
||||
assert isinstance(out_indices, Sequence), \
|
||||
f'"out_indices" must by a sequence or int, ' \
|
||||
f'get {type(out_indices)} instead.'
|
||||
for i, index in enumerate(out_indices):
|
||||
if index < 0:
|
||||
out_indices[i] = self.num_stages + index
|
||||
assert out_indices[i] >= 0, f'Invalid out_indices {index}'
|
||||
self.out_indices = out_indices
|
||||
|
||||
if frozen_stages not in range(-1, self.num_stages):
|
||||
raise ValueError('frozen_stages must be in range(-1, '
|
||||
f'{self.num_stages}). '
|
||||
f'But received {frozen_stages}')
|
||||
self.frozen_stages = frozen_stages
|
||||
|
||||
_make_layer_func = {
|
||||
'mobilenetv2': self.make_mobilenetv2_layer,
|
||||
'mobilevit': self.make_mobilevit_layer,
|
||||
}
|
||||
|
||||
self.stem = ConvModule(
|
||||
in_channels=in_channels,
|
||||
out_channels=stem_channels,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=1,
|
||||
conv_cfg=conv_cfg,
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=act_cfg)
|
||||
|
||||
in_channels = stem_channels
|
||||
layers = []
|
||||
for i, layer_settings in enumerate(arch):
|
||||
layer_type, settings = layer_settings[0], layer_settings[1:]
|
||||
layer, out_channels = _make_layer_func[layer_type](in_channels,
|
||||
*settings)
|
||||
layers.append(layer)
|
||||
in_channels = out_channels
|
||||
self.layers = nn.Sequential(*layers)
|
||||
|
||||
self.conv_1x1_exp = ConvModule(
|
||||
in_channels=in_channels,
|
||||
out_channels=last_exp_factor * in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
conv_cfg=conv_cfg,
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=act_cfg)
|
||||
|
||||
@staticmethod
|
||||
def make_mobilevit_layer(in_channels,
|
||||
out_channels,
|
||||
stride,
|
||||
transformer_dim,
|
||||
ffn_dim,
|
||||
num_transformer_blocks,
|
||||
expand_ratio=4):
|
||||
"""Build mobilevit layer, which consists of one InvertedResidual and
|
||||
one MobileVitBlock.
|
||||
|
||||
Args:
|
||||
in_channels (int): The input channels.
|
||||
out_channels (int): The output channels.
|
||||
stride (int): The stride of the first 3x3 convolution in the
|
||||
``InvertedResidual`` layers.
|
||||
transformer_dim (int): The channels of the transformer layers.
|
||||
ffn_dim (int): The mid-channels of the feedforward network in
|
||||
transformer layers.
|
||||
num_transformer_blocks (int): The number of transformer blocks.
|
||||
expand_ratio (int): adjusts number of channels of the hidden layer
|
||||
in ``InvertedResidual`` by this amount. Defaults to 4.
|
||||
"""
|
||||
layer = []
|
||||
layer.append(
|
||||
InvertedResidual(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
stride=stride,
|
||||
expand_ratio=expand_ratio,
|
||||
act_cfg=dict(type='Swish'),
|
||||
))
|
||||
layer.append(
|
||||
MobileVitBlock(
|
||||
in_channels=out_channels,
|
||||
transformer_dim=transformer_dim,
|
||||
ffn_dim=ffn_dim,
|
||||
out_channels=out_channels,
|
||||
num_transformer_blocks=num_transformer_blocks,
|
||||
))
|
||||
return nn.Sequential(*layer), out_channels
|
||||
|
||||
@staticmethod
|
||||
def make_mobilenetv2_layer(in_channels,
|
||||
out_channels,
|
||||
stride,
|
||||
num_blocks,
|
||||
expand_ratio=4):
|
||||
"""Build mobilenetv2 layer, which consists of several InvertedResidual
|
||||
layers.
|
||||
|
||||
Args:
|
||||
in_channels (int): The input channels.
|
||||
out_channels (int): The output channels.
|
||||
stride (int): The stride of the first 3x3 convolution in the
|
||||
``InvertedResidual`` layers.
|
||||
num_blocks (int): The number of ``InvertedResidual`` blocks.
|
||||
expand_ratio (int): adjusts number of channels of the hidden layer
|
||||
in ``InvertedResidual`` by this amount. Defaults to 4.
|
||||
"""
|
||||
layer = []
|
||||
for i in range(num_blocks):
|
||||
stride = stride if i == 0 else 1
|
||||
|
||||
layer.append(
|
||||
InvertedResidual(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
stride=stride,
|
||||
expand_ratio=expand_ratio,
|
||||
act_cfg=dict(type='Swish'),
|
||||
))
|
||||
in_channels = out_channels
|
||||
return nn.Sequential(*layer), out_channels
|
||||
|
||||
def _freeze_stages(self):
|
||||
for i in range(0, self.frozen_stages):
|
||||
layer = self.layers[i]
|
||||
layer.eval()
|
||||
for param in layer.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def train(self, mode=True):
|
||||
super(MobileViT, self).train(mode)
|
||||
self._freeze_stages()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.stem(x)
|
||||
outs = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
if i == len(self.layers) - 1:
|
||||
x = self.conv_1x1_exp(x)
|
||||
if i in self.out_indices:
|
||||
outs.append(x)
|
||||
|
||||
return tuple(outs)
|
|
@ -34,3 +34,4 @@ Import:
|
|||
- configs/efficientformer/metafile.yml
|
||||
- configs/swin_transformer_v2/metafile.yml
|
||||
- configs/deit3/metafile.yml
|
||||
- configs/mobilevit/metafile.yml
|
||||
|
|
|
@ -0,0 +1,86 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from mmcls.models.backbones import MobileViT
|
||||
|
||||
|
||||
def test_assertion():
|
||||
with pytest.raises(AssertionError):
|
||||
MobileViT(arch='unknown')
|
||||
|
||||
with pytest.raises(AssertionError):
|
||||
# MobileViT out_indices should be valid depth.
|
||||
MobileViT(out_indices=-100)
|
||||
|
||||
|
||||
def test_mobilevit():
|
||||
|
||||
# Test forward
|
||||
model = MobileViT(arch='small')
|
||||
model.init_weights()
|
||||
model.train()
|
||||
|
||||
imgs = torch.randn(1, 3, 256, 256)
|
||||
feat = model(imgs)
|
||||
assert len(feat) == 1
|
||||
assert feat[0].shape == torch.Size([1, 640, 8, 8])
|
||||
|
||||
# Test custom arch
|
||||
model = MobileViT(arch=[
|
||||
['mobilenetv2', 16, 1, 1, 2],
|
||||
['mobilenetv2', 24, 2, 3, 2],
|
||||
['mobilevit', 48, 2, 64, 128, 2, 2],
|
||||
['mobilevit', 64, 2, 80, 160, 4, 2],
|
||||
['mobilevit', 80, 2, 96, 192, 3, 2],
|
||||
])
|
||||
model.init_weights()
|
||||
model.train()
|
||||
|
||||
imgs = torch.randn(1, 3, 256, 256)
|
||||
feat = model(imgs)
|
||||
assert len(feat) == 1
|
||||
assert feat[0].shape == torch.Size([1, 320, 8, 8])
|
||||
|
||||
# Test last_exp_factor
|
||||
model = MobileViT(arch='small', last_exp_factor=8)
|
||||
model.init_weights()
|
||||
model.train()
|
||||
|
||||
imgs = torch.randn(1, 3, 256, 256)
|
||||
feat = model(imgs)
|
||||
assert len(feat) == 1
|
||||
assert feat[0].shape == torch.Size([1, 1280, 8, 8])
|
||||
|
||||
# Test stem_channels
|
||||
model = MobileViT(arch='small', stem_channels=32)
|
||||
model.init_weights()
|
||||
model.train()
|
||||
|
||||
imgs = torch.randn(1, 3, 256, 256)
|
||||
feat = model(imgs)
|
||||
assert len(feat) == 1
|
||||
assert feat[0].shape == torch.Size([1, 640, 8, 8])
|
||||
|
||||
# Test forward with multiple outputs
|
||||
model = MobileViT(arch='small', out_indices=range(5))
|
||||
|
||||
imgs = torch.randn(1, 3, 256, 256)
|
||||
feat = model(imgs)
|
||||
assert len(feat) == 5
|
||||
assert feat[0].shape == torch.Size([1, 32, 128, 128])
|
||||
assert feat[1].shape == torch.Size([1, 64, 64, 64])
|
||||
assert feat[2].shape == torch.Size([1, 96, 32, 32])
|
||||
assert feat[3].shape == torch.Size([1, 128, 16, 16])
|
||||
assert feat[4].shape == torch.Size([1, 640, 8, 8])
|
||||
|
||||
# Test frozen_stages
|
||||
model = MobileViT(arch='small', frozen_stages=2)
|
||||
model.init_weights()
|
||||
model.train()
|
||||
|
||||
for i in range(2):
|
||||
assert not model.layers[i].training
|
||||
|
||||
for i in range(2, 5):
|
||||
assert model.layers[i].training
|
Loading…
Reference in New Issue