[Enhance] Adapt test cases on Ascend NPU. (#1728)

pull/1733/head
Yinlei Sun 2023-07-28 13:39:38 +08:00 committed by GitHub
parent 4d1dbafaa2
commit c5248b17b7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 14 additions and 9 deletions

View File

@ -5,6 +5,7 @@ from unittest import TestCase
import torch
import torch.nn as nn
from mmengine.device import get_device
from mmengine.logging import MMLogger
from mmengine.model import BaseModule
from mmengine.optim import OptimWrapper
@ -79,7 +80,7 @@ class TestDenseCLHook(TestCase):
self.temp_dir.cleanup()
def test_densecl_hook(self):
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
device = get_device()
dummy_dataset = DummyDataset()
toy_model = ToyModel().to(device)
densecl_hook = DenseCLHook(start_iters=1)

View File

@ -8,6 +8,7 @@ from unittest.mock import ANY, MagicMock, call
import torch
import torch.nn as nn
from mmengine.device import get_device
from mmengine.evaluator import Evaluator
from mmengine.logging import MMLogger
from mmengine.model import BaseModel
@ -70,7 +71,7 @@ class TestEMAHook(TestCase):
self.temp_dir.cleanup()
def test_load_state_dict(self):
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
device = get_device()
model = SimpleModel().to(device)
ema_hook = EMAHook()
runner = Runner(
@ -95,7 +96,7 @@ class TestEMAHook(TestCase):
def test_evaluate_on_ema(self):
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
device = get_device()
model = SimpleModel().to(device)
# Test validate on ema model

View File

@ -5,6 +5,7 @@ from unittest import TestCase
import torch
import torch.nn as nn
from mmengine.device import get_device
from mmengine.logging import MMLogger
from mmengine.model import BaseModule
from mmengine.runner import Runner
@ -79,7 +80,7 @@ class TestSimSiamHook(TestCase):
self.temp_dir.cleanup()
def test_simsiam_hook(self):
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
device = get_device()
dummy_dataset = DummyDataset()
toy_model = ToyModel().to(device)
simsiam_hook = SimSiamHook(

View File

@ -5,6 +5,7 @@ from unittest import TestCase
import torch
import torch.nn as nn
from mmengine.device import get_device
from mmengine.logging import MMLogger
from mmengine.model import BaseModule
from mmengine.optim import OptimWrapper
@ -86,7 +87,7 @@ class TestSwAVHook(TestCase):
self.temp_dir.cleanup()
def test_swav_hook(self):
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
device = get_device()
dummy_dataset = DummyDataset()
toy_model = ToyModel().to(device)
swav_hook = SwAVHook(

View File

@ -10,6 +10,7 @@ import torch
import torch.nn as nn
from mmcv.transforms import Compose
from mmengine.dataset import BaseDataset, ConcatDataset, RepeatDataset
from mmengine.device import get_device
from mmengine.logging import MMLogger
from mmengine.model import BaseDataPreprocessor, BaseModel
from mmengine.optim import OptimWrapper
@ -130,7 +131,7 @@ class TestSwitchRecipeHook(TestCase):
self.assertIsNone(hook.schedule[1]['batch_augments'])
def test_do_switch(self):
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
device = get_device()
model = SimpleModel().to(device)
loss = CrossEntropyLoss(use_soft=True)
@ -205,7 +206,7 @@ class TestSwitchRecipeHook(TestCase):
# runner.train()
def test_resume(self):
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
device = get_device()
model = SimpleModel().to(device)
loss = CrossEntropyLoss(use_soft=True)
@ -275,7 +276,7 @@ class TestSwitchRecipeHook(TestCase):
logs.output)
def test_switch_train_pipeline(self):
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
device = get_device()
model = SimpleModel().to(device)
runner = Runner(
@ -324,7 +325,7 @@ class TestSwitchRecipeHook(TestCase):
pipeline)
def test_switch_loss(self):
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
device = get_device()
model = SimpleModel().to(device)
runner = Runner(