[Feature] Support HorNet Backbone for dev1.x. (#1094)

* add hornet

* add hornet

* fix mixup config

* add optim cfgs

Co-authored-by: Ezra-Yu <18586273+Ezra-Yu@users.noreply.github.com>
pull/1102/head
takuoko 2022-11-04 16:33:46 +09:00 committed by GitHub
parent b16938dc59
commit d05cbbcf9b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
26 changed files with 1141 additions and 1 deletions

View File

@ -144,7 +144,7 @@ def show_summary(summary_data, args):
if args.inference_time:
table.add_column('Inference Time (std) (ms/im)')
if args.flops:
table.add_column('Flops', justify='right')
table.add_column('Flops', justify='right', width=11)
table.add_column('Params', justify='right')
for model_name, summary in summary_data.items():

View File

@ -148,6 +148,7 @@ Results and models are available in the [model zoo](https://mmclassification.rea
- [x] [MobileOne](https://github.com/open-mmlab/mmclassification/tree/1.x/configs/mobileone)
- [x] [EfficientFormer](https://github.com/open-mmlab/mmclassification/tree/1.x/configs/efficientformer)
- [x] [MViT](https://github.com/open-mmlab/mmclassification/tree/1.x/configs/mvit)
- [x] [HorNet](https://github.com/open-mmlab/mmclassification/tree/master/configs/hornet)
- [x] [MobileViT](https://github.com/open-mmlab/mmclassification/tree/1.x/configs/mobilevit)
</details>

View File

@ -147,6 +147,7 @@ mim install -e .
- [x] [MobileOne](https://github.com/open-mmlab/mmclassification/tree/1.x/configs/mobileone)
- [x] [EfficientFormer](https://github.com/open-mmlab/mmclassification/tree/1.x/configs/efficientformer)
- [x] [MViT](https://github.com/open-mmlab/mmclassification/tree/1.x/configs/mvit)
- [x] [HorNet](https://github.com/open-mmlab/mmclassification/tree/master/configs/hornet)
- [x] [MobileViT](https://github.com/open-mmlab/mmclassification/tree/1.x/configs/mobilevit)
</details>

View File

@ -0,0 +1,20 @@
model = dict(
type='ImageClassifier',
backbone=dict(type='HorNet', arch='base-gf', drop_path_rate=0.5),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1024,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
dict(type='Constant', layer=['LayerScale'], val=1e-6)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))

View File

@ -0,0 +1,21 @@
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='HorNet', arch='base', drop_path_rate=0.5),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1024,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
dict(type='Constant', layer=['LayerScale'], val=1e-6)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))

View File

@ -0,0 +1,21 @@
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='HorNet', arch='large-gf', drop_path_rate=0.2),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1536,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
dict(type='Constant', layer=['LayerScale'], val=1e-6)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))

View File

@ -0,0 +1,17 @@
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='HorNet', arch='large-gf384', drop_path_rate=0.4),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1536,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
dict(type='Constant', layer=['LayerScale'], val=1e-6)
])

View File

@ -0,0 +1,21 @@
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='HorNet', arch='large', drop_path_rate=0.2),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1536,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
dict(type='Constant', layer=['LayerScale'], val=1e-6)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))

View File

@ -0,0 +1,21 @@
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='HorNet', arch='small-gf', drop_path_rate=0.4),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=768,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
dict(type='Constant', layer=['LayerScale'], val=1e-6)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))

View File

@ -0,0 +1,21 @@
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='HorNet', arch='small', drop_path_rate=0.4),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=768,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
dict(type='Constant', layer=['LayerScale'], val=1e-6)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))

View File

@ -0,0 +1,21 @@
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='HorNet', arch='tiny-gf', drop_path_rate=0.2),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=512,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
dict(type='Constant', layer=['LayerScale'], val=1e-6)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))

View File

@ -0,0 +1,21 @@
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='HorNet', arch='tiny', drop_path_rate=0.2),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=512,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
dict(type='Constant', layer=['LayerScale'], val=1e-6)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))

View File

@ -0,0 +1,51 @@
# HorNet
> [HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions](https://arxiv.org/pdf/2207.14284v2.pdf)
<!-- [ALGORITHM] -->
## Abstract
Recent progress in vision Transformers exhibits great success in various tasks driven by the new spatial modeling mechanism based on dot-product self-attention. In this paper, we show that the key ingredients behind the vision Transformers, namely input-adaptive, long-range and high-order spatial interactions, can also be efficiently implemented with a convolution-based framework. We present the Recursive Gated Convolution (g nConv) that performs high-order spatial interactions with gated convolutions and recursive designs. The new operation is highly flexible and customizable, which is compatible with various variants of convolution and extends the two-order interactions in self-attention to arbitrary orders without introducing significant extra computation. g nConv can serve as a plug-and-play module to improve various vision Transformers and convolution-based models. Based on the operation, we construct a new family of generic vision backbones named HorNet. Extensive experiments on ImageNet classification, COCO object detection and ADE20K semantic segmentation show HorNet outperform Swin Transformers and ConvNeXt by a significant margin with similar overall architecture and training configurations. HorNet also shows favorable scalability to more training data and a larger model size. Apart from the effectiveness in visual encoders, we also show g nConv can be applied to task-specific decoders and consistently improve dense prediction performance with less computation. Our results demonstrate that g nConv can be a new basic module for visual modeling that effectively combines the merits of both vision Transformers and CNNs. Code is available at https://github.com/raoyongming/HorNet.
<div align=center>
<img src="https://user-images.githubusercontent.com/24734142/188356236-b8e3db94-eaa6-48e9-b323-15e5ba7f2991.png" width="80%"/>
</div>
## Results and models
### ImageNet-1k
| Model | Pretrain | resolution | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
| :-----------: | :----------: | :--------: | :-------: | :------: | :-------: | :-------: | :--------------------------------------------------------------: | :----------------------------------------------------------------: |
| HorNet-T\* | From scratch | 224x224 | 22.41 | 3.98 | 82.84 | 96.24 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/hornet/hornet-tiny_8xb128_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/hornet/hornet-tiny_3rdparty_in1k_20220915-0e8eedff.pth) |
| HorNet-T-GF\* | From scratch | 224x224 | 22.99 | 3.9 | 82.98 | 96.38 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/hornet/hornet-tiny-gf_8xb128_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/hornet/hornet-tiny-gf_3rdparty_in1k_20220915-4c35a66b.pth) |
| HorNet-S\* | From scratch | 224x224 | 49.53 | 8.83 | 83.79 | 96.75 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/hornet/hornet-small_8xb64_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/hornet/hornet-small_3rdparty_in1k_20220915-5935f60f.pth) |
| HorNet-S-GF\* | From scratch | 224x224 | 50.4 | 8.71 | 83.98 | 96.77 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/hornet/hornet-small-gf_8xb64_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/hornet/hornet-small-gf_3rdparty_in1k_20220915-649ca492.pth) |
| HorNet-B\* | From scratch | 224x224 | 87.26 | 15.59 | 84.24 | 96.94 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/hornet/hornet-base_8xb64_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/hornet/hornet-base_3rdparty_in1k_20220915-a06176bb.pth) |
| HorNet-B-GF\* | From scratch | 224x224 | 88.42 | 15.42 | 84.32 | 96.95 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/hornet/hornet-base-gf_8xb64_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/hornet/hornet-base-gf_3rdparty_in1k_20220915-82c06fa7.pth) |
\*Models with * are converted from [the official repo](https://github.com/raoyongming/HorNet). The config files of these models are only for validation. We don't ensure these config files' training accuracy and welcome you to contribute your reproduction results.
### Pre-trained Models
The pre-trained models on ImageNet-21k are used to fine-tune on the downstream tasks.
| Model | Pretrain | resolution | Params(M) | Flops(G) | Download |
| :--------------: | :----------: | :--------: | :-------: | :------: | :------------------------------------------------------------------------------------------------------------------------: |
| HorNet-L\* | ImageNet-21k | 224x224 | 194.54 | 34.83 | [model](https://download.openmmlab.com/mmclassification/v0/hornet/hornet-large_3rdparty_in21k_20220909-9ccef421.pth) |
| HorNet-L-GF\* | ImageNet-21k | 224x224 | 196.29 | 34.58 | [model](https://download.openmmlab.com/mmclassification/v0/hornet/hornet-large-gf_3rdparty_in21k_20220909-3aea3b61.pth) |
| HorNet-L-GF384\* | ImageNet-21k | 384x384 | 201.23 | 101.63 | [model](https://download.openmmlab.com/mmclassification/v0/hornet/hornet-large-gf384_3rdparty_in21k_20220909-80894290.pth) |
\*Models with * are converted from [the official repo](https://github.com/raoyongming/HorNet).
## Citation
```
@article{rao2022hornet,
title={HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions},
author={Rao, Yongming and Zhao, Wenliang and Tang, Yansong and Zhou, Jie and Lim, Ser-Lam and Lu, Jiwen},
journal={arXiv preprint arXiv:2207.14284},
year={2022}
}
```

View File

@ -0,0 +1,12 @@
_base_ = [
'../_base_/models/hornet/hornet-base-gf.py',
'../_base_/datasets/imagenet_bs64_swin_224.py',
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../_base_/default_runtime.py',
]
data = dict(samples_per_gpu=64)
optim_wrapper = dict(optimizer=dict(lr=4e-3), clip_grad=dict(max_norm=1.0))
custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]

View File

@ -0,0 +1,12 @@
_base_ = [
'../_base_/models/hornet/hornet-base.py',
'../_base_/datasets/imagenet_bs64_swin_224.py',
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../_base_/default_runtime.py',
]
data = dict(samples_per_gpu=64)
optim_wrapper = dict(optimizer=dict(lr=4e-3), clip_grad=dict(max_norm=5.0))
custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]

View File

@ -0,0 +1,12 @@
_base_ = [
'../_base_/models/hornet/hornet-small-gf.py',
'../_base_/datasets/imagenet_bs64_swin_224.py',
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../_base_/default_runtime.py',
]
data = dict(samples_per_gpu=64)
optim_wrapper = dict(optimizer=dict(lr=4e-3), clip_grad=dict(max_norm=1.0))
custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]

View File

@ -0,0 +1,12 @@
_base_ = [
'../_base_/models/hornet/hornet-small.py',
'../_base_/datasets/imagenet_bs64_swin_224.py',
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../_base_/default_runtime.py',
]
data = dict(samples_per_gpu=64)
optim_wrapper = dict(optimizer=dict(lr=4e-3), clip_grad=dict(max_norm=5.0))
custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]

View File

@ -0,0 +1,12 @@
_base_ = [
'../_base_/models/hornet/hornet-tiny-gf.py',
'../_base_/datasets/imagenet_bs64_swin_224.py',
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../_base_/default_runtime.py',
]
data = dict(samples_per_gpu=128)
optim_wrapper = dict(optimizer=dict(lr=4e-3), clip_grad=dict(max_norm=1.0))
custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]

View File

@ -0,0 +1,12 @@
_base_ = [
'../_base_/models/hornet/hornet-tiny.py',
'../_base_/datasets/imagenet_bs64_swin_224.py',
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../_base_/default_runtime.py',
]
data = dict(samples_per_gpu=128)
optim_wrapper = dict(optimizer=dict(lr=4e-3), clip_grad=dict(max_norm=100.0))
custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]

View File

@ -0,0 +1,97 @@
Collections:
- Name: HorNet
Metadata:
Training Data: ImageNet-1k
Training Techniques:
- AdamW
- Weight Decay
Architecture:
- HorNet
- gnConv
Paper:
URL: https://arxiv.org/pdf/2207.14284v2.pdf
Title: "HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions"
README: configs/hornet/README.md
Code:
Version: v0.24.0
URL: https://github.com/open-mmlab/mmclassification/blob/v0.24.0/mmcls/models/backbones/hornet.py
Models:
- Name: hornet-tiny_3rdparty_in1k
Metadata:
FLOPs: 3976156352 # 3.98G
Parameters: 22409512 # 22.41M
In Collection: HorNet
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 82.84
Top 5 Accuracy: 96.24
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/hornet/hornet-tiny_3rdparty_in1k_20220915-0e8eedff.pth
Config: configs/hornet/hornet-tiny_8xb128_in1k.py
- Name: hornet-tiny-gf_3rdparty_in1k
Metadata:
FLOPs: 3896472160 # 3.9G
Parameters: 22991848 # 22.99M
In Collection: HorNet
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 82.98
Top 5 Accuracy: 96.38
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/hornet/hornet-tiny-gf_3rdparty_in1k_20220915-4c35a66b.pth
Config: configs/hornet/hornet-tiny-gf_8xb128_in1k.py
- Name: hornet-small_3rdparty_in1k
Metadata:
FLOPs: 8825621280 # 8.83G
Parameters: 49528264 # 49.53M
In Collection: HorNet
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.79
Top 5 Accuracy: 96.75
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/hornet/hornet-small_3rdparty_in1k_20220915-5935f60f.pth
Config: configs/hornet/hornet-small_8xb64_in1k.py
- Name: hornet-small-gf_3rdparty_in1k
Metadata:
FLOPs: 8706094992 # 8.71G
Parameters: 50401768 # 50.4M
In Collection: HorNet
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.98
Top 5 Accuracy: 96.77
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/hornet/hornet-small-gf_3rdparty_in1k_20220915-649ca492.pth
Config: configs/hornet/hornet-small-gf_8xb64_in1k.py
- Name: hornet-base_3rdparty_in1k
Metadata:
FLOPs: 15582677376 # 15.59G
Parameters: 87256680 # 87.26M
In Collection: HorNet
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 84.24
Top 5 Accuracy: 96.94
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/hornet/hornet-base_3rdparty_in1k_20220915-a06176bb.pth
Config: configs/hornet/hornet-base_8xb64_in1k.py
- Name: hornet-base-gf_3rdparty_in1k
Metadata:
FLOPs: 15423308992 # 15.42G
Parameters: 88421352 # 88.42M
In Collection: HorNet
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 84.32
Top 5 Accuracy: 96.95
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/hornet/hornet-base-gf_3rdparty_in1k_20220915-82c06fa7.pth
Config: configs/hornet/hornet-base-gf_8xb64_in1k.py

View File

@ -69,6 +69,7 @@ Backbones
EdgeNeXt
EfficientFormer
EfficientNet
HorNet
HRNet
InceptionV3
LeNet5

View File

@ -10,6 +10,7 @@ from .densenet import DenseNet
from .edgenext import EdgeNeXt
from .efficientformer import EfficientFormer
from .efficientnet import EfficientNet
from .hornet import HorNet
from .hrnet import HRNet
from .inception_v3 import InceptionV3
from .lenet import LeNet5
@ -90,5 +91,6 @@ __all__ = [
'SwinTransformerV2',
'MViT',
'DeiT3',
'HorNet',
'MobileViT',
]

View File

@ -0,0 +1,495 @@
# Copyright (c) OpenMMLab. All rights reserved.
# Adapted from official impl at https://github.com/raoyongming/HorNet.
try:
import torch.fft
fft = True
except ImportError:
fft = None
import copy
from functools import partial
from typing import Sequence
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from mmcv.cnn.bricks import DropPath
from mmcls.models.backbones.base_backbone import BaseBackbone
from mmcls.registry import MODELS
from ..utils import LayerScale
def get_dwconv(dim, kernel_size, bias=True):
"""build a pepth-wise convolution."""
return nn.Conv2d(
dim,
dim,
kernel_size=kernel_size,
padding=(kernel_size - 1) // 2,
bias=bias,
groups=dim)
class HorNetLayerNorm(nn.Module):
"""An implementation of LayerNorm of HorNet.
The differences between HorNetLayerNorm & torch LayerNorm:
1. Supports two data formats channels_last or channels_first.
Args:
normalized_shape (int or list or torch.Size): input shape from an
expected input of size.
eps (float): a value added to the denominator for numerical stability.
Defaults to 1e-5.
data_format (str): The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape (batch_size, height,
width, channels) while channels_first corresponds to inputs with
shape (batch_size, channels, height, width).
Defaults to 'channels_last'.
"""
def __init__(self,
normalized_shape,
eps=1e-6,
data_format='channels_last'):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ['channels_last', 'channels_first']:
raise ValueError(
'data_format must be channels_last or channels_first')
self.normalized_shape = (normalized_shape, )
def forward(self, x):
if self.data_format == 'channels_last':
return F.layer_norm(x, self.normalized_shape, self.weight,
self.bias, self.eps)
elif self.data_format == 'channels_first':
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class GlobalLocalFilter(nn.Module):
"""A GlobalLocalFilter of HorNet.
Args:
dim (int): Number of input channels.
h (int): Height of complex_weight.
Defaults to 14.
w (int): Width of complex_weight.
Defaults to 8.
"""
def __init__(self, dim, h=14, w=8):
super().__init__()
self.dw = nn.Conv2d(
dim // 2,
dim // 2,
kernel_size=3,
padding=1,
bias=False,
groups=dim // 2)
self.complex_weight = nn.Parameter(
torch.randn(dim // 2, h, w, 2, dtype=torch.float32) * 0.02)
self.pre_norm = HorNetLayerNorm(
dim, eps=1e-6, data_format='channels_first')
self.post_norm = HorNetLayerNorm(
dim, eps=1e-6, data_format='channels_first')
def forward(self, x):
x = self.pre_norm(x)
x1, x2 = torch.chunk(x, 2, dim=1)
x1 = self.dw(x1)
x2 = x2.to(torch.float32)
B, C, a, b = x2.shape
x2 = torch.fft.rfft2(x2, dim=(2, 3), norm='ortho')
weight = self.complex_weight
if not weight.shape[1:3] == x2.shape[2:4]:
weight = F.interpolate(
weight.permute(3, 0, 1, 2),
size=x2.shape[2:4],
mode='bilinear',
align_corners=True).permute(1, 2, 3, 0)
weight = torch.view_as_complex(weight.contiguous())
x2 = x2 * weight
x2 = torch.fft.irfft2(x2, s=(a, b), dim=(2, 3), norm='ortho')
x = torch.cat([x1.unsqueeze(2), x2.unsqueeze(2)],
dim=2).reshape(B, 2 * C, a, b)
x = self.post_norm(x)
return x
class gnConv(nn.Module):
"""A gnConv of HorNet.
Args:
dim (int): Number of input channels.
order (int): Order of gnConv.
Defaults to 5.
dw_cfg (dict): The Config for dw conv.
Defaults to ``dict(type='DW', kernel_size=7)``.
scale (float): Scaling parameter of gflayer outputs.
Defaults to 1.0.
"""
def __init__(self,
dim,
order=5,
dw_cfg=dict(type='DW', kernel_size=7),
scale=1.0):
super().__init__()
self.order = order
self.dims = [dim // 2**i for i in range(order)]
self.dims.reverse()
self.proj_in = nn.Conv2d(dim, 2 * dim, 1)
cfg = copy.deepcopy(dw_cfg)
dw_type = cfg.pop('type')
assert dw_type in ['DW', 'GF'],\
'dw_type should be `DW` or `GF`'
if dw_type == 'DW':
self.dwconv = get_dwconv(sum(self.dims), **cfg)
elif dw_type == 'GF':
self.dwconv = GlobalLocalFilter(sum(self.dims), **cfg)
self.proj_out = nn.Conv2d(dim, dim, 1)
self.projs = nn.ModuleList([
nn.Conv2d(self.dims[i], self.dims[i + 1], 1)
for i in range(order - 1)
])
self.scale = scale
def forward(self, x):
x = self.proj_in(x)
y, x = torch.split(x, (self.dims[0], sum(self.dims)), dim=1)
x = self.dwconv(x) * self.scale
dw_list = torch.split(x, self.dims, dim=1)
x = y * dw_list[0]
for i in range(self.order - 1):
x = self.projs[i](x) * dw_list[i + 1]
x = self.proj_out(x)
return x
class HorNetBlock(nn.Module):
"""A block of HorNet.
Args:
dim (int): Number of input channels.
order (int): Order of gnConv.
Defaults to 5.
dw_cfg (dict): The Config for dw conv.
Defaults to ``dict(type='DW', kernel_size=7)``.
scale (float): Scaling parameter of gflayer outputs.
Defaults to 1.0.
drop_path_rate (float): Stochastic depth rate. Defaults to 0.
use_layer_scale (bool): Whether to use use_layer_scale in HorNet
block. Defaults to True.
"""
def __init__(self,
dim,
order=5,
dw_cfg=dict(type='DW', kernel_size=7),
scale=1.0,
drop_path_rate=0.,
use_layer_scale=True):
super().__init__()
self.out_channels = dim
self.norm1 = HorNetLayerNorm(
dim, eps=1e-6, data_format='channels_first')
self.gnconv = gnConv(dim, order, dw_cfg, scale)
self.norm2 = HorNetLayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(dim, 4 * dim)
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * dim, dim)
if use_layer_scale:
self.gamma1 = LayerScale(dim, data_format='channels_first')
self.gamma2 = LayerScale(dim)
else:
self.gamma1, self.gamma2 = nn.Identity(), nn.Identity()
self.drop_path = DropPath(
drop_path_rate) if drop_path_rate > 0. else nn.Identity()
def forward(self, x):
x = x + self.drop_path(self.gamma1(self.gnconv(self.norm1(x))))
input = x
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
x = self.norm2(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
x = self.gamma2(x)
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
x = input + self.drop_path(x)
return x
@MODELS.register_module()
class HorNet(BaseBackbone):
"""HorNet
A PyTorch impl of : `HorNet: Efficient High-Order Spatial Interactions
with Recursive Gated Convolutions`
Inspiration from
https://github.com/raoyongming/HorNet
Args:
arch (str | dict): HorNet architecture.
If use string, choose from 'tiny', 'small', 'base' and 'large'.
If use dict, it should have below keys:
- **base_dim** (int): The base dimensions of embedding.
- **depths** (List[int]): The number of blocks in each stage.
- **orders** (List[int]): The number of order of gnConv in each
stage.
- **dw_cfg** (List[dict]): The Config for dw conv.
Defaults to 'tiny'.
in_channels (int): Number of input image channels. Defaults to 3.
drop_path_rate (float): Stochastic depth rate. Defaults to 0.
scale (float): Scaling parameter of gflayer outputs. Defaults to 1/3.
use_layer_scale (bool): Whether to use use_layer_scale in HorNet
block. Defaults to True.
out_indices (Sequence[int]): Output from which stages.
Default: ``(3, )``.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters. Defaults to -1.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
gap_before_final_norm (bool): Whether to globally average the feature
map before the final norm layer. In the official repo, it's only
used in classification task. Defaults to True.
init_cfg (dict, optional): The Config for initialization.
Defaults to None.
"""
arch_zoo = {
**dict.fromkeys(['t', 'tiny'],
{'base_dim': 64,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [dict(type='DW', kernel_size=7)] * 4}),
**dict.fromkeys(['t-gf', 'tiny-gf'],
{'base_dim': 64,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [
dict(type='DW', kernel_size=7),
dict(type='DW', kernel_size=7),
dict(type='GF', h=14, w=8),
dict(type='GF', h=7, w=4)]}),
**dict.fromkeys(['s', 'small'],
{'base_dim': 96,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [dict(type='DW', kernel_size=7)] * 4}),
**dict.fromkeys(['s-gf', 'small-gf'],
{'base_dim': 96,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [
dict(type='DW', kernel_size=7),
dict(type='DW', kernel_size=7),
dict(type='GF', h=14, w=8),
dict(type='GF', h=7, w=4)]}),
**dict.fromkeys(['b', 'base'],
{'base_dim': 128,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [dict(type='DW', kernel_size=7)] * 4}),
**dict.fromkeys(['b-gf', 'base-gf'],
{'base_dim': 128,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [
dict(type='DW', kernel_size=7),
dict(type='DW', kernel_size=7),
dict(type='GF', h=14, w=8),
dict(type='GF', h=7, w=4)]}),
**dict.fromkeys(['b-gf384', 'base-gf384'],
{'base_dim': 128,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [
dict(type='DW', kernel_size=7),
dict(type='DW', kernel_size=7),
dict(type='GF', h=24, w=12),
dict(type='GF', h=13, w=7)]}),
**dict.fromkeys(['l', 'large'],
{'base_dim': 192,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [dict(type='DW', kernel_size=7)] * 4}),
**dict.fromkeys(['l-gf', 'large-gf'],
{'base_dim': 192,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [
dict(type='DW', kernel_size=7),
dict(type='DW', kernel_size=7),
dict(type='GF', h=14, w=8),
dict(type='GF', h=7, w=4)]}),
**dict.fromkeys(['l-gf384', 'large-gf384'],
{'base_dim': 192,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [
dict(type='DW', kernel_size=7),
dict(type='DW', kernel_size=7),
dict(type='GF', h=24, w=12),
dict(type='GF', h=13, w=7)]}),
} # yapf: disable
def __init__(self,
arch='tiny',
in_channels=3,
drop_path_rate=0.,
scale=1 / 3,
use_layer_scale=True,
out_indices=(3, ),
frozen_stages=-1,
with_cp=False,
gap_before_final_norm=True,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
if fft is None:
raise RuntimeError(
'Failed to import torch.fft. Please install "torch>=1.7".')
if isinstance(arch, str):
arch = arch.lower()
assert arch in set(self.arch_zoo), \
f'Arch {arch} is not in default archs {set(self.arch_zoo)}'
self.arch_settings = self.arch_zoo[arch]
else:
essential_keys = {'base_dim', 'depths', 'orders', 'dw_cfg'}
assert isinstance(arch, dict) and set(arch) == essential_keys, \
f'Custom arch needs a dict with keys {essential_keys}'
self.arch_settings = arch
self.scale = scale
self.out_indices = out_indices
self.frozen_stages = frozen_stages
self.with_cp = with_cp
self.gap_before_final_norm = gap_before_final_norm
base_dim = self.arch_settings['base_dim']
dims = list(map(lambda x: 2**x * base_dim, range(4)))
self.downsample_layers = nn.ModuleList()
stem = nn.Sequential(
nn.Conv2d(in_channels, dims[0], kernel_size=4, stride=4),
HorNetLayerNorm(dims[0], eps=1e-6, data_format='channels_first'))
self.downsample_layers.append(stem)
for i in range(3):
downsample_layer = nn.Sequential(
HorNetLayerNorm(
dims[i], eps=1e-6, data_format='channels_first'),
nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2),
)
self.downsample_layers.append(downsample_layer)
total_depth = sum(self.arch_settings['depths'])
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, total_depth)
] # stochastic depth decay rule
cur_block_idx = 0
self.stages = nn.ModuleList()
for i in range(4):
stage = nn.Sequential(*[
HorNetBlock(
dim=dims[i],
order=self.arch_settings['orders'][i],
dw_cfg=self.arch_settings['dw_cfg'][i],
scale=self.scale,
drop_path_rate=dpr[cur_block_idx + j],
use_layer_scale=use_layer_scale)
for j in range(self.arch_settings['depths'][i])
])
self.stages.append(stage)
cur_block_idx += self.arch_settings['depths'][i]
if isinstance(out_indices, int):
out_indices = [out_indices]
assert isinstance(out_indices, Sequence), \
f'"out_indices" must by a sequence or int, ' \
f'get {type(out_indices)} instead.'
out_indices = list(out_indices)
for i, index in enumerate(out_indices):
if index < 0:
out_indices[i] = len(self.stages) + index
assert 0 <= out_indices[i] <= len(self.stages), \
f'Invalid out_indices {index}.'
self.out_indices = out_indices
norm_layer = partial(
HorNetLayerNorm, eps=1e-6, data_format='channels_first')
for i_layer in out_indices:
layer = norm_layer(dims[i_layer])
layer_name = f'norm{i_layer}'
self.add_module(layer_name, layer)
def train(self, mode=True):
super(HorNet, self).train(mode)
self._freeze_stages()
def _freeze_stages(self):
for i in range(0, self.frozen_stages + 1):
# freeze patch embed
m = self.downsample_layers[i]
m.eval()
for param in m.parameters():
param.requires_grad = False
# freeze blocks
m = self.stages[i]
m.eval()
for param in m.parameters():
param.requires_grad = False
if i in self.out_indices:
# freeze norm
m = getattr(self, f'norm{i + 1}')
m.eval()
for param in m.parameters():
param.requires_grad = False
def forward(self, x):
outs = []
for i in range(4):
x = self.downsample_layers[i](x)
if self.with_cp:
x = checkpoint.checkpoint_sequential(self.stages[i],
len(self.stages[i]), x)
else:
x = self.stages[i](x)
if i in self.out_indices:
norm_layer = getattr(self, f'norm{i}')
if self.gap_before_final_norm:
gap = x.mean([-2, -1], keepdim=True)
outs.append(norm_layer(gap).flatten(1))
else:
# The output of LayerNorm2d may be discontiguous, which
# may cause some problem in the downstream tasks
outs.append(norm_layer(x).contiguous())
return tuple(outs)

View File

@ -34,4 +34,5 @@ Import:
- configs/efficientformer/metafile.yml
- configs/swin_transformer_v2/metafile.yml
- configs/deit3/metafile.yml
- configs/hornet/metafile.yml
- configs/mobilevit/metafile.yml

View File

@ -0,0 +1,174 @@
# Copyright (c) OpenMMLab. All rights reserved.
import math
from copy import deepcopy
from itertools import chain
from unittest import TestCase
import pytest
import torch
from mmengine.utils import digit_version
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm
from torch import nn
from mmcls.models.backbones import HorNet
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
@pytest.mark.skipif(
digit_version(torch.__version__) < digit_version('1.7.0'),
reason='torch.fft is not available before 1.7.0')
class TestHorNet(TestCase):
def setUp(self):
self.cfg = dict(
arch='t', drop_path_rate=0.1, gap_before_final_norm=False)
def test_arch(self):
# Test invalid default arch
with self.assertRaisesRegex(AssertionError, 'not in default archs'):
cfg = deepcopy(self.cfg)
cfg['arch'] = 'unknown'
HorNet(**cfg)
# Test invalid custom arch
with self.assertRaisesRegex(AssertionError, 'Custom arch needs'):
cfg = deepcopy(self.cfg)
cfg['arch'] = {
'depths': [1, 1, 1, 1],
'orders': [1, 1, 1, 1],
}
HorNet(**cfg)
# Test custom arch
cfg = deepcopy(self.cfg)
base_dim = 64
depths = [2, 3, 18, 2]
embed_dims = [base_dim, base_dim * 2, base_dim * 4, base_dim * 8]
cfg['arch'] = {
'base_dim':
base_dim,
'depths':
depths,
'orders': [2, 3, 4, 5],
'dw_cfg': [
dict(type='DW', kernel_size=7),
dict(type='DW', kernel_size=7),
dict(type='GF', h=14, w=8),
dict(type='GF', h=7, w=4)
],
}
model = HorNet(**cfg)
for i in range(len(depths)):
stage = model.stages[i]
self.assertEqual(stage[-1].out_channels, embed_dims[i])
self.assertEqual(len(stage), depths[i])
def test_init_weights(self):
# test weight init cfg
cfg = deepcopy(self.cfg)
cfg['init_cfg'] = [
dict(
type='Kaiming',
layer='Conv2d',
mode='fan_in',
nonlinearity='linear')
]
model = HorNet(**cfg)
ori_weight = model.downsample_layers[0][0].weight.clone().detach()
model.init_weights()
initialized_weight = model.downsample_layers[0][0].weight
self.assertFalse(torch.allclose(ori_weight, initialized_weight))
def test_forward(self):
imgs = torch.randn(3, 3, 224, 224)
cfg = deepcopy(self.cfg)
model = HorNet(**cfg)
outs = model(imgs)
self.assertIsInstance(outs, tuple)
self.assertEqual(len(outs), 1)
feat = outs[-1]
self.assertEqual(feat.shape, (3, 512, 7, 7))
# test multiple output indices
cfg = deepcopy(self.cfg)
cfg['out_indices'] = (0, 1, 2, 3)
model = HorNet(**cfg)
outs = model(imgs)
self.assertIsInstance(outs, tuple)
self.assertEqual(len(outs), 4)
for emb_size, stride, out in zip([64, 128, 256, 512], [1, 2, 4, 8],
outs):
self.assertEqual(out.shape,
(3, emb_size, 56 // stride, 56 // stride))
# test with dynamic input shape
imgs1 = torch.randn(3, 3, 224, 224)
imgs2 = torch.randn(3, 3, 256, 256)
imgs3 = torch.randn(3, 3, 256, 309)
cfg = deepcopy(self.cfg)
model = HorNet(**cfg)
for imgs in [imgs1, imgs2, imgs3]:
outs = model(imgs)
self.assertIsInstance(outs, tuple)
self.assertEqual(len(outs), 1)
feat = outs[-1]
expect_feat_shape = (math.floor(imgs.shape[2] / 32),
math.floor(imgs.shape[3] / 32))
self.assertEqual(feat.shape, (3, 512, *expect_feat_shape))
def test_structure(self):
# test drop_path_rate decay
cfg = deepcopy(self.cfg)
cfg['drop_path_rate'] = 0.2
model = HorNet(**cfg)
depths = model.arch_settings['depths']
stages = model.stages
blocks = chain(*[stage for stage in stages])
total_depth = sum(depths)
dpr = [
x.item()
for x in torch.linspace(0, cfg['drop_path_rate'], total_depth)
]
for i, (block, expect_prob) in enumerate(zip(blocks, dpr)):
if expect_prob == 0:
assert isinstance(block.drop_path, nn.Identity)
else:
self.assertAlmostEqual(block.drop_path.drop_prob, expect_prob)
# test VAN with first stage frozen.
cfg = deepcopy(self.cfg)
frozen_stages = 0
cfg['frozen_stages'] = frozen_stages
cfg['out_indices'] = (0, 1, 2, 3)
model = HorNet(**cfg)
model.init_weights()
model.train()
# the patch_embed and first stage should not require grad.
for i in range(frozen_stages + 1):
down = model.downsample_layers[i]
for param in down.parameters():
self.assertFalse(param.requires_grad)
blocks = model.stages[i]
for param in blocks.parameters():
self.assertFalse(param.requires_grad)
# the second stage should require grad.
for i in range(frozen_stages + 1, 4):
down = model.downsample_layers[i]
for param in down.parameters():
self.assertTrue(param.requires_grad)
blocks = model.stages[i]
for param in blocks.parameters():
self.assertTrue(param.requires_grad)

View File

@ -0,0 +1,61 @@
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
from collections import OrderedDict
import mmengine
import torch
from mmengine.runner import CheckpointLoader
def convert_hornet(ckpt):
new_ckpt = OrderedDict()
for k, v in list(ckpt.items()):
new_v = v
if k.startswith('head'):
new_k = k.replace('head.', 'head.fc.')
new_ckpt[new_k] = new_v
continue
elif k.startswith('norm'):
new_k = k.replace('norm.', 'norm3.')
elif 'gnconv.pws' in k:
new_k = k.replace('gnconv.pws', 'gnconv.projs')
elif 'gamma1' in k:
new_k = k.replace('gamma1', 'gamma1.weight')
elif 'gamma2' in k:
new_k = k.replace('gamma2', 'gamma2.weight')
else:
new_k = k
if not new_k.startswith('head'):
new_k = 'backbone.' + new_k
new_ckpt[new_k] = new_v
return new_ckpt
def main():
parser = argparse.ArgumentParser(
description='Convert keys in pretrained van models to mmcls style.')
parser.add_argument('src', help='src model path or url')
# The dst path must be a full path of the new checkpoint.
parser.add_argument('dst', help='save path')
args = parser.parse_args()
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu')
if 'model' in checkpoint:
state_dict = checkpoint['model']
else:
state_dict = checkpoint
weight = convert_hornet(state_dict)
mmengine.mkdir_or_exist(osp.dirname(args.dst))
torch.save(weight, args.dst)
print('Done!!')
if __name__ == '__main__':
main()