[Enchance] Set a random seed when the user does not set a seed. (#554)
parent
78d6d8503f
commit
d25a78d547
|
@ -1,9 +1,10 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from .inference import inference_model, init_model, show_result_pyplot
|
||||
from .test import multi_gpu_test, single_gpu_test
|
||||
from .train import set_random_seed, train_model
|
||||
from .train import init_random_seed, set_random_seed, train_model
|
||||
|
||||
__all__ = [
|
||||
'set_random_seed', 'train_model', 'init_model', 'inference_model',
|
||||
'multi_gpu_test', 'single_gpu_test', 'show_result_pyplot'
|
||||
'multi_gpu_test', 'single_gpu_test', 'show_result_pyplot',
|
||||
'init_random_seed'
|
||||
]
|
||||
|
|
|
@ -4,8 +4,10 @@ import warnings
|
|||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
|
||||
from mmcv.runner import DistSamplerSeedHook, build_optimizer, build_runner
|
||||
from mmcv.runner import (DistSamplerSeedHook, build_optimizer, build_runner,
|
||||
get_dist_info)
|
||||
|
||||
from mmcls.core import DistOptimizerHook
|
||||
from mmcls.datasets import build_dataloader, build_dataset
|
||||
|
@ -29,6 +31,39 @@ except ImportError:
|
|||
from mmcls.core import Fp16OptimizerHook
|
||||
|
||||
|
||||
def init_random_seed(seed=None, device='cuda'):
|
||||
"""Initialize random seed.
|
||||
|
||||
If the seed is not set, the seed will be automatically randomized,
|
||||
and then broadcast to all processes to prevent some potential bugs.
|
||||
|
||||
Args:
|
||||
seed (int, Optional): The seed. Default to None.
|
||||
device (str): The device where the seed will be put on.
|
||||
Default to 'cuda'.
|
||||
|
||||
Returns:
|
||||
int: Seed to be used.
|
||||
"""
|
||||
if seed is not None:
|
||||
return seed
|
||||
|
||||
# Make sure all ranks share the same random seed to prevent
|
||||
# some potential bugs. Please refer to
|
||||
# https://github.com/open-mmlab/mmdetection/issues/6339
|
||||
rank, world_size = get_dist_info()
|
||||
seed = np.random.randint(2**31)
|
||||
if world_size == 1:
|
||||
return seed
|
||||
|
||||
if rank == 0:
|
||||
random_num = torch.tensor(seed, dtype=torch.int32, device=device)
|
||||
else:
|
||||
random_num = torch.tensor(0, dtype=torch.int32, device=device)
|
||||
dist.broadcast(random_num, src=0)
|
||||
return random_num.item()
|
||||
|
||||
|
||||
def set_random_seed(seed, deterministic=False):
|
||||
"""Set random seed.
|
||||
|
||||
|
|
|
@ -12,7 +12,7 @@ from mmcv import Config, DictAction
|
|||
from mmcv.runner import get_dist_info, init_dist
|
||||
|
||||
from mmcls import __version__
|
||||
from mmcls.apis import set_random_seed, train_model
|
||||
from mmcls.apis import init_random_seed, set_random_seed, train_model
|
||||
from mmcls.datasets import build_dataset
|
||||
from mmcls.models import build_classifier
|
||||
from mmcls.utils import collect_env, get_root_logger
|
||||
|
@ -143,12 +143,12 @@ def main():
|
|||
logger.info(f'Config:\n{cfg.pretty_text}')
|
||||
|
||||
# set random seeds
|
||||
if args.seed is not None:
|
||||
logger.info(f'Set random seed to {args.seed}, '
|
||||
f'deterministic: {args.deterministic}')
|
||||
set_random_seed(args.seed, deterministic=args.deterministic)
|
||||
cfg.seed = args.seed
|
||||
meta['seed'] = args.seed
|
||||
seed = init_random_seed(args.seed)
|
||||
logger.info(f'Set random seed to {seed}, '
|
||||
f'deterministic: {args.deterministic}')
|
||||
set_random_seed(seed, deterministic=args.deterministic)
|
||||
cfg.seed = seed
|
||||
meta['seed'] = seed
|
||||
|
||||
model = build_classifier(cfg.model)
|
||||
model.init_weights()
|
||||
|
|
Loading…
Reference in New Issue