Merge branch 'dev/backbone_utils' into 'master'
Dev/backbone utils See merge request open-mmlab/mmclassification!19pull/2/head
commit
d8f6d48d9f
|
@ -0,0 +1,4 @@
|
|||
from .channel_shuffle import channel_shuffle
|
||||
from .make_divisible import make_divisible
|
||||
|
||||
__all__ = ['channel_shuffle', 'make_divisible']
|
|
@ -0,0 +1,28 @@
|
|||
import torch
|
||||
|
||||
|
||||
def channel_shuffle(x, groups):
|
||||
"""Channel Shuffle operation.
|
||||
|
||||
This function enables cross-group information flow for multiple groups
|
||||
convolution layers.
|
||||
|
||||
Args:
|
||||
x (Tensor): The input tensor.
|
||||
groups (int): The number of groups to divide the input tensor
|
||||
in the channel dimension.
|
||||
|
||||
Returns:
|
||||
Tensor: The output tensor after channel shuffle operation.
|
||||
"""
|
||||
|
||||
batch_size, num_channels, height, width = x.size()
|
||||
assert (num_channels % groups == 0), ('num_channels should be '
|
||||
'divisible by groups')
|
||||
channels_per_group = num_channels // groups
|
||||
|
||||
x = x.view(batch_size, groups, channels_per_group, height, width)
|
||||
x = torch.transpose(x, 1, 2).contiguous()
|
||||
x = x.view(batch_size, -1, height, width)
|
||||
|
||||
return x
|
|
@ -0,0 +1,24 @@
|
|||
def make_divisible(value, divisor, min_value=None, min_ratio=0.9):
|
||||
"""Make divisible function.
|
||||
|
||||
This function rounds the channel number down to the nearest value that can
|
||||
be divisible by the divisor.
|
||||
|
||||
Args:
|
||||
value (int): The original channel number.
|
||||
divisor (int): The divisor to fully divide the channel number.
|
||||
min_value (int, optional): The minimum value of the output channel.
|
||||
Default: None, means that the minimum value equal to the divisor.
|
||||
min_ratio (float, optional): The minimum ratio of the rounded channel
|
||||
number to the original channel number. Default: 0.9.
|
||||
Returns:
|
||||
int: The modified output channel number
|
||||
"""
|
||||
|
||||
if min_value is None:
|
||||
min_value = divisor
|
||||
new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
|
||||
# Make sure that round down does not go down by more than (1-min_ratio).
|
||||
if new_value < min_ratio * value:
|
||||
new_value += divisor
|
||||
return new_value
|
|
@ -0,0 +1,37 @@
|
|||
import pytest
|
||||
import torch
|
||||
|
||||
from mmcls.models.utils import channel_shuffle, make_divisible
|
||||
|
||||
|
||||
def test_make_divisible():
|
||||
# test min_value is None
|
||||
result = make_divisible(34, 8, None)
|
||||
assert result == 32
|
||||
|
||||
# test when new_value > min_ratio * value
|
||||
result = make_divisible(10, 8, min_ratio=0.9)
|
||||
assert result == 16
|
||||
|
||||
# test min_value = 0.8
|
||||
result = make_divisible(33, 8, min_ratio=0.8)
|
||||
assert result == 32
|
||||
|
||||
|
||||
def test_channel_shuffle():
|
||||
x = torch.randn(1, 24, 56, 56)
|
||||
with pytest.raises(AssertionError):
|
||||
# num_channels should be divisible by groups
|
||||
channel_shuffle(x, 7)
|
||||
|
||||
groups = 3
|
||||
batch_size, num_channels, height, width = x.size()
|
||||
channels_per_group = num_channels // groups
|
||||
out = channel_shuffle(x, groups)
|
||||
# test the output value when groups = 3
|
||||
for b in range(batch_size):
|
||||
for c in range(num_channels):
|
||||
c_out = c % channels_per_group * groups + c // channels_per_group
|
||||
for i in range(height):
|
||||
for j in range(width):
|
||||
assert x[b, c, i, j] == out[b, c_out, i, j]
|
Loading…
Reference in New Issue