[Feature]Add cal_acc to cls_head.py (#206)
* add cal_acc to cls_head.py * test ClsHead with cal_acc * 4 spaces indentationpull/210/head
parent
5195932952
commit
dcf61173f6
|
@ -13,11 +13,15 @@ class ClsHead(BaseHead):
|
|||
Args:
|
||||
loss (dict): Config of classification loss.
|
||||
topk (int | tuple): Top-k accuracy.
|
||||
cal_acc (bool): Whether to calculate accuracy during training.
|
||||
If you use Mixup/CutMix or something like that during training,
|
||||
it is not reasonable to calculate accuracy. Defaults to True.
|
||||
""" # noqa: W605
|
||||
|
||||
def __init__(self,
|
||||
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
|
||||
topk=(1, )):
|
||||
topk=(1, ),
|
||||
cal_acc=True):
|
||||
super(ClsHead, self).__init__()
|
||||
|
||||
assert isinstance(loss, dict)
|
||||
|
@ -30,17 +34,22 @@ class ClsHead(BaseHead):
|
|||
|
||||
self.compute_loss = build_loss(loss)
|
||||
self.compute_accuracy = Accuracy(topk=self.topk)
|
||||
self.cal_acc = cal_acc
|
||||
|
||||
def loss(self, cls_score, gt_label):
|
||||
num_samples = len(cls_score)
|
||||
losses = dict()
|
||||
# compute loss
|
||||
loss = self.compute_loss(cls_score, gt_label, avg_factor=num_samples)
|
||||
# compute accuracy
|
||||
acc = self.compute_accuracy(cls_score, gt_label)
|
||||
assert len(acc) == len(self.topk)
|
||||
if self.cal_acc:
|
||||
# compute accuracy
|
||||
acc = self.compute_accuracy(cls_score, gt_label)
|
||||
assert len(acc) == len(self.topk)
|
||||
losses['accuracy'] = {
|
||||
f'top-{k}': a
|
||||
for k, a in zip(self.topk, acc)
|
||||
}
|
||||
losses['loss'] = loss
|
||||
losses['accuracy'] = {f'top-{k}': a for k, a in zip(self.topk, acc)}
|
||||
return losses
|
||||
|
||||
def forward_train(self, cls_score, gt_label):
|
||||
|
|
|
@ -1,6 +1,26 @@
|
|||
import torch
|
||||
|
||||
from mmcls.models.heads import MultiLabelClsHead, MultiLabelLinearClsHead
|
||||
from mmcls.models.heads import (ClsHead, MultiLabelClsHead,
|
||||
MultiLabelLinearClsHead)
|
||||
|
||||
|
||||
def test_cls_head():
|
||||
|
||||
# test ClsHead with cal_acc=True
|
||||
head = ClsHead()
|
||||
fake_cls_score = torch.rand(4, 3)
|
||||
fake_gt_label = torch.randint(0, 2, (4, ))
|
||||
|
||||
losses = head.loss(fake_cls_score, fake_gt_label)
|
||||
assert losses['loss'].item() > 0
|
||||
|
||||
# test ClsHead with cal_acc=False
|
||||
head = ClsHead(cal_acc=False)
|
||||
fake_cls_score = torch.rand(4, 3)
|
||||
fake_gt_label = torch.randint(0, 2, (4, ))
|
||||
|
||||
losses = head.loss(fake_cls_score, fake_gt_label)
|
||||
assert losses['loss'].item() > 0
|
||||
|
||||
|
||||
def test_multilabel_head():
|
||||
|
|
Loading…
Reference in New Issue