Update checkpoint path of ResNet-50 on CUB dataset
parent
349ec86801
commit
f0ee5dcb2a
|
@ -19,7 +19,7 @@ The pre-trained models on ImageNet-21k are used to fine-tune, and therefore don'
|
|||
|
||||
| Model | resolution | Params(M) | Flops(G) | Download |
|
||||
|:---------------:|:-----------:|:---------:|:---------:|:--------:|
|
||||
| ResNet-50-mill | 224x224 | 86.74 | 15.14 | [model](https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_mill_3rdparty_in21k_20220307-bdb3a68b.pth)|
|
||||
| ResNet-50-mill | 224x224 | 86.74 | 15.14 | [model](https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_3rdparty-mill_in21k_20220331-faac000b.pth)|
|
||||
|
||||
*The "mill" means using the mutil-label pretrain weight from [ImageNet-21K Pretraining for the Masses](https://github.com/Alibaba-MIIL/ImageNet21K).*
|
||||
|
||||
|
@ -69,7 +69,7 @@ The pre-trained models on ImageNet-21k are used to fine-tune, and therefore don'
|
|||
|
||||
| Model | Pretrain | resolution | Params(M) | Flops(G) | Top-1 (%) | Config | Download |
|
||||
|:---------------------:|:------------:|:---------:|:---------:|:--------:|:---------:|:---------:|:---------:|
|
||||
| ResNet-50 | [ImageNet-21k-mill](https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_mill_3rdparty_in21k_20220307-bdb3a68b.pth) | 448x448 | 23.92 | 16.48 | 88.45 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb8_cub.py) | [model](https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb8_cub_20220307-57840e60.pth) | [log](https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb8_cub_20220307-57840e60.log.json) |
|
||||
| ResNet-50 | [ImageNet-21k-mill](https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_3rdparty-mill_in21k_20220331-faac000b.pth) | 448x448 | 23.92 | 16.48 | 88.45 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb8_cub.py) | [model](https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb8_cub_20220307-57840e60.pth) | [log](https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb8_cub_20220307-57840e60.log.json) |
|
||||
|
||||
|
||||
## Citation
|
||||
|
|
|
@ -385,6 +385,6 @@ Models:
|
|||
Metrics:
|
||||
Top 1 Accuracy: 88.45
|
||||
Task: Image Classification
|
||||
Pretrain: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_mill_3rdparty_in21k_20220307-bdb3a68b.pth
|
||||
Pretrain: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_3rdparty-mill_in21k_20220331-faac000b.pth
|
||||
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb8_cub_20220307-57840e60.pth
|
||||
Config: configs/resnet/resnet50_8xb8_cub.py
|
||||
|
|
|
@ -4,7 +4,7 @@ _base_ = [
|
|||
]
|
||||
|
||||
# use pre-train weight converted from https://github.com/Alibaba-MIIL/ImageNet21K # noqa
|
||||
checkpoint = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_mill_3rdparty_in21k_20220307-bdb3a68b.pth' # noqa
|
||||
checkpoint = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_3rdparty-mill_in21k_20220331-faac000b.pth' # noqa
|
||||
|
||||
model = dict(
|
||||
type='ImageClassifier',
|
||||
|
|
Loading…
Reference in New Issue