only keep one file to set swin transformer model config

pull/1780/head
John 2023-09-05 21:26:43 +08:00
parent ed3b7f8ae6
commit f4d372ba7d
13 changed files with 98 additions and 132 deletions

View File

@ -1,29 +0,0 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.model import ConstantInit, TruncNormalInit
from mmpretrain.models import (CutMix, GlobalAveragePooling, ImageClassifier,
LabelSmoothLoss, LinearClsHead, Mixup,
SwinTransformer)
# model settings
model = dict(
type=ImageClassifier,
backbone=dict(
type=SwinTransformer, arch='base', img_size=224, drop_path_rate=0.5),
neck=dict(type=GlobalAveragePooling),
head=dict(
type=LinearClsHead,
num_classes=1000,
in_channels=1024,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(type=LabelSmoothLoss, label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(
augments=[dict(type=Mixup, alpha=0.8),
dict(type=CutMix, alpha=1.0)]),
)

View File

@ -1,17 +0,0 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmpretrain.models import (CrossEntropyLoss, GlobalAveragePooling,
ImageClassifier, LinearClsHead, SwinTransformer)
# model settings
# Only for evaluation
model = dict(
type=ImageClassifier,
backbone=dict(type=SwinTransformer, arch='large', img_size=224),
neck=dict(type=GlobalAveragePooling),
head=dict(
type=LinearClsHead,
num_classes=1000,
in_channels=1536,
loss=dict(type=CrossEntropyLoss, loss_weight=1.0),
topk=(1, 5)))

View File

@ -1,21 +0,0 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmpretrain.models import (CrossEntropyLoss, GlobalAveragePooling,
ImageClassifier, LinearClsHead, SwinTransformer)
# model settings
# Only for evaluation
model = dict(
type=ImageClassifier,
backbone=dict(
type=SwinTransformer,
arch='large',
img_size=384,
stage_cfgs=dict(block_cfgs=dict(window_size=12))),
neck=dict(type=GlobalAveragePooling),
head=dict(
type=LinearClsHead,
num_classes=1000,
in_channels=1536,
loss=dict(type=CrossEntropyLoss, loss_weight=1.0),
topk=(1, 5)))

View File

@ -1,29 +0,0 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.model import ConstantInit, TruncNormalInit
from mmpretrain.models import (CutMix, GlobalAveragePooling, ImageClassifier,
LabelSmoothLoss, LinearClsHead, Mixup,
SwinTransformer)
# model settings
model = dict(
type=ImageClassifier,
backbone=dict(
type=SwinTransformer, arch='small', img_size=224, drop_path_rate=0.3),
neck=dict(type=GlobalAveragePooling),
head=dict(
type=LinearClsHead,
num_classes=1000,
in_channels=768,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(type=LabelSmoothLoss, label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(
augments=[dict(type=Mixup, alpha=0.8),
dict(type=CutMix, alpha=1.0)]),
)

View File

@ -1,29 +0,0 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.model import ConstantInit, TruncNormalInit
from mmpretrain.models import (CutMix, GlobalAveragePooling, ImageClassifier,
LabelSmoothLoss, LinearClsHead, Mixup,
SwinTransformer)
# model settings
model = dict(
type=ImageClassifier,
backbone=dict(
type=SwinTransformer, arch='tiny', img_size=224, drop_path_rate=0.2),
neck=dict(type=GlobalAveragePooling),
head=dict(
type=LinearClsHead,
num_classes=1000,
in_channels=768,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(type=LabelSmoothLoss, label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(
augments=[dict(type=Mixup, alpha=0.8),
dict(type=CutMix, alpha=1.0)]),
)

View File

@ -1,12 +1,35 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmengine.model import ConstantInit, TruncNormalInit
from mmpretrain.models import CutMix, LabelSmoothLoss, Mixup
with read_base():
from .._base_.datasets.imagenet_bs64_swin_224 import *
from .._base_.default_runtime import *
from .._base_.models.swin_transformer.base_224 import *
from .._base_.models.swin_transformer_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
# model settings
model.update(
backbone=dict(img_size=224, drop_path_rate=0.5, stage_cfgs=None),
head=dict(
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type=LabelSmoothLoss,
label_smooth_val=0.1,
mode='original',
loss_weight=0),
topk=None,
cal_acc=False),
init_cfg=[
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(
augments=[dict(type=Mixup, alpha=0.8),
dict(type=CutMix, alpha=1.0)]))
# schedule settings
optim_wrapper = dict(clip_grad=dict(max_norm=5.0))

View File

@ -5,7 +5,7 @@ from mmengine.config import read_base
with read_base():
from .._base_.datasets.imagenet_bs64_swin_384 import *
from .._base_.default_runtime import *
from .._base_.models.swin_transformer.base_384 import *
from .._base_.models.swin_transformer_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
# schedule settings

View File

@ -5,8 +5,14 @@ from mmengine.config import read_base
with read_base():
from .._base_.datasets.imagenet_bs64_swin_224 import *
from .._base_.default_runtime import *
from .._base_.models.swin_transformer.large_224 import *
from .._base_.models.swin_transformer_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
# model settings
model.update(
backbone=dict(arch='large', img_size=224, stage_cfgs=None),
head=dict(in_channels=1536),
)
# schedule settings
optim_wrapper = dict(clip_grad=dict(max_norm=5.0))

View File

@ -5,8 +5,14 @@ from mmengine.config import read_base
with read_base():
from .._base_.datasets.imagenet_bs64_swin_384 import *
from .._base_.default_runtime import *
from .._base_.models.swin_transformer.large_384 import *
from .._base_.models.swin_transformer_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
# model settings
model.update(
backbone=dict(arch='large'),
head=dict(in_channels=1536),
)
# schedule settings
optim_wrapper = dict(clip_grad=dict(max_norm=5.0))

View File

@ -10,11 +10,17 @@ from mmpretrain.models import ImageClassifier
with read_base():
from .._base_.datasets.cub_bs8_384 import *
from .._base_.default_runtime import *
from .._base_.models.swin_transformer.large_384 import *
from .._base_.models.swin_transformer_base import *
from .._base_.schedules.cub_bs64 import *
# model settings
checkpoint = 'https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin-large_3rdparty_in21k-384px.pth' # noqa
model.update(
backbone=dict(arch='large'),
head=dict(in_channels=1536),
)
model = dict(
type=ImageClassifier,
backbone=dict(

View File

@ -1,12 +1,37 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmengine.model import ConstantInit, TruncNormalInit
from mmpretrain.models import CutMix, LabelSmoothLoss, Mixup
with read_base():
from .._base_.datasets.imagenet_bs64_swin_224 import *
from .._base_.default_runtime import *
from .._base_.models.swin_transformer.small_224 import *
from .._base_.models.swin_transformer_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
# model settings
model.update(
backbone=dict(
arch='small', img_size=224, drop_path_rate=0.3, stage_cfgs=None),
head=dict(
in_channels=768,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type=LabelSmoothLoss,
label_smooth_val=0.1,
mode='original',
loss_weight=0),
topk=None,
cal_acc=False),
init_cfg=[
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(
augments=[dict(type=Mixup, alpha=0.8),
dict(type=CutMix, alpha=1.0)]))
# schedule settings
optim_wrapper = dict(clip_grad=dict(max_norm=5.0))

View File

@ -1,12 +1,37 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmengine.model import ConstantInit, TruncNormalInit
from mmpretrain.models import CutMix, LabelSmoothLoss, Mixup
with read_base():
from .._base_.datasets.imagenet_bs64_swin_224 import *
from .._base_.default_runtime import *
from .._base_.models.swin_transformer.tiny_224 import *
from .._base_.models.swin_transformer_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
# model settings
model.update(
backbone=dict(
arch='tiny', img_size=224, drop_path_rate=0.2, stage_cfgs=None),
head=dict(
in_channels=768,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type=LabelSmoothLoss,
label_smooth_val=0.1,
mode='original',
loss_weight=0),
topk=None,
cal_acc=False),
init_cfg=[
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(
augments=[dict(type=Mixup, alpha=0.8),
dict(type=CutMix, alpha=1.0)]))
# schedule settings
optim_wrapper = dict(clip_grad=dict(max_norm=5.0))