pull/2/head
lixiaojie 2020-06-04 02:42:53 +08:00
parent b392ba44cc
commit fa49911440
2 changed files with 56 additions and 64 deletions

View File

@ -22,13 +22,12 @@ def conv3x3(in_planes, out_planes, stride=1, dilation=1):
def conv_1x1_bn(inp, oup, activation=nn.ReLU6):
return nn.Sequential(
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
activation(inplace=True)
)
nn.Conv2d(inp, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup),
activation(inplace=True))
class ConvBNReLU(nn.Sequential):
def __init__(self,
in_planes,
out_planes,
@ -39,16 +38,15 @@ class ConvBNReLU(nn.Sequential):
padding = (kernel_size - 1) // 2
super(ConvBNReLU, self).__init__(
nn.Conv2d(in_planes,
out_planes,
kernel_size,
stride,
padding,
groups=groups,
bias=False),
nn.BatchNorm2d(out_planes),
activation(inplace=True)
)
nn.Conv2d(
in_planes,
out_planes,
kernel_size,
stride,
padding,
groups=groups,
bias=False), nn.BatchNorm2d(out_planes),
activation(inplace=True))
def _make_divisible(v, divisor, min_value=None):
@ -62,6 +60,7 @@ def _make_divisible(v, divisor, min_value=None):
class InvertedResidual(nn.Module):
def __init__(self,
inplanes,
outplanes,
@ -79,17 +78,18 @@ class InvertedResidual(nn.Module):
layers = []
if expand_ratio != 1:
# pw
layers.append(ConvBNReLU(inplanes,
hidden_dim,
kernel_size=1,
activation=activation))
layers.append(
ConvBNReLU(
inplanes, hidden_dim, kernel_size=1,
activation=activation))
layers.extend([
# dw
ConvBNReLU(hidden_dim,
hidden_dim,
stride=stride,
groups=hidden_dim,
activation=activation),
ConvBNReLU(
hidden_dim,
hidden_dim,
stride=stride,
groups=hidden_dim,
activation=activation),
# pw-linear
nn.Conv2d(hidden_dim, outplanes, 1, 1, 0, bias=False),
nn.BatchNorm2d(outplanes),
@ -97,6 +97,7 @@ class InvertedResidual(nn.Module):
self.conv = nn.Sequential(*layers)
def forward(self, x):
def _inner_forward(x):
if self.use_res_connect:
return x + self.conv(x)
@ -122,15 +123,23 @@ def make_inverted_res_layer(block,
layers = []
for i in range(num_blocks):
if i == 0:
layers.append(block(inplanes, planes, stride,
expand_ratio=expand_ratio,
activation=activation,
with_cp=with_cp))
layers.append(
block(
inplanes,
planes,
stride,
expand_ratio=expand_ratio,
activation=activation,
with_cp=with_cp))
else:
layers.append(block(inplanes, planes, 1,
expand_ratio=expand_ratio,
activation=activation,
with_cp=with_cp))
layers.append(
block(
inplanes,
planes,
1,
expand_ratio=expand_ratio,
activation=activation,
with_cp=with_cp))
inplanes = planes
return nn.Sequential(*layers)
@ -162,15 +171,10 @@ class MobileNetv2(BaseBackbone):
super(MobileNetv2, self).__init__()
block = InvertedResidual
# expand_ratio, out_channel, n, stride
inverted_residual_setting = [
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1]
]
inverted_residual_setting = [[1, 16, 1, 1], [6, 24, 2,
2], [6, 32, 3, 2],
[6, 64, 4, 2], [6, 96, 3, 1],
[6, 160, 3, 2], [6, 320, 1, 1]]
self.widen_factor = widen_factor
if isinstance(activation, str):
activation = eval(activation)
@ -211,9 +215,8 @@ class MobileNetv2(BaseBackbone):
self.out_channel = int(self.out_channel * widen_factor) \
if widen_factor > 1.0 else self.out_channel
self.conv_last = nn.Conv2d(self.inplanes,
self.out_channel,
1, 1, 0, bias=False)
self.conv_last = nn.Conv2d(
self.inplanes, self.out_channel, 1, 1, 0, bias=False)
self.bn_last = nn.BatchNorm2d(self.out_channel)
self.feat_dim = self.out_channel

View File

@ -10,7 +10,7 @@ from mmcls.models.backbones.mobilenet_v2 import InvertedResidual
def is_block(modules):
"""Check if is ResNet building block."""
if isinstance(modules, (InvertedResidual,)):
if isinstance(modules, (InvertedResidual, )):
return True
return False
@ -35,40 +35,30 @@ def test_mobilenetv2_invertedresidual():
with pytest.raises(AssertionError):
# stride must be in [1, 2]
InvertedResidual(64, 16,
stride=3, expand_ratio=6)
InvertedResidual(64, 16, stride=3, expand_ratio=6)
# Test InvertedResidual with checkpoint forward, stride=1
block = InvertedResidual(64, 16,
stride=1,
expand_ratio=6)
block = InvertedResidual(64, 16, stride=1, expand_ratio=6)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 16, 56, 56])
# Test InvertedResidual with checkpoint forward, stride=2
block = InvertedResidual(64, 16,
stride=2,
expand_ratio=6)
block = InvertedResidual(64, 16, stride=2, expand_ratio=6)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 16, 28, 28])
# Test InvertedResidual with checkpoint forward
block = InvertedResidual(64, 16,
stride=1,
expand_ratio=6,
with_cp=True)
block = InvertedResidual(64, 16, stride=1, expand_ratio=6, with_cp=True)
assert block.with_cp
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 16, 56, 56])
# Test InvertedResidual with activation=nn.ReLU
block = InvertedResidual(64, 16,
stride=1,
expand_ratio=6,
activation=nn.ReLU)
block = InvertedResidual(
64, 16, stride=1, expand_ratio=6, activation=nn.ReLU)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 16, 56, 56])
@ -193,8 +183,8 @@ def test_mobilenetv2_backbone():
assert feat[6].shape == torch.Size([1, 320, 7, 7])
# Test MobileNetv2 with layers 1, 3, 5 out forward
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU6,
out_indices=(0, 2, 4))
model = MobileNetv2(
widen_factor=1.0, activation=nn.ReLU6, out_indices=(0, 2, 4))
model.init_weights()
model.train()
@ -206,8 +196,7 @@ def test_mobilenetv2_backbone():
assert feat[2].shape == torch.Size([1, 96, 14, 14])
# Test MobileNetv2 with checkpoint forward
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU6,
with_cp=True)
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU6, with_cp=True)
for m in model.modules():
if is_block(m):
assert m.with_cp