diff --git a/mmpretrain/models/multimodal/mplugowl/__init__.py b/mmpretrain/models/multimodal/mplugowl/__init__.py new file mode 100644 index 00000000..eea79252 --- /dev/null +++ b/mmpretrain/models/multimodal/mplugowl/__init__.py @@ -0,0 +1,4 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .mplug_owl import mPLUGOwl + +__all__ = ['mPLUGOwl'] diff --git a/mmpretrain/models/multimodal/mplugowl/mplugowl.py b/mmpretrain/models/multimodal/mplugowl/mplugowl.py new file mode 100644 index 00000000..82735ae4 --- /dev/null +++ b/mmpretrain/models/multimodal/mplugowl/mplugowl.py @@ -0,0 +1,1088 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import random +import re +import math +from typing import List, Optional, Tuple + +import torch +import torch.nn as nn +from mmengine.logging import MMLogger +from mmengine.model import BaseModel + +from mmpretrain.registry import MODELS, TOKENIZER +from mmpretrain.structures import DataSample +from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer + +def get_ltor_masks_and_position_ids_from_embeddings(data): + """Build masks and position id for left to right model.""" + + # Extract batch size and sequence length. + micro_batch_size, seq_length = data.size()[:2] + + # Attention mask (lower triangular). + att_mask_batch = 1 + attention_mask = torch.tril(torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)).view( + att_mask_batch, 1, seq_length, seq_length + ) + + # Loss mask. + loss_mask = torch.ones(data.size()[:2], dtype=torch.float, device=data.device) + + # Position ids. + position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device) + position_ids = position_ids.unsqueeze(0).expand_as(data[..., 0]) + + # Convert attention mask to binary: + attention_mask = attention_mask < 0.5 + + return attention_mask, loss_mask, position_ids + + +def get_media_indices(my_list): + if isinstance(my_list, torch.Tensor): + my_list = my_list.cpu().tolist() + result = [] + for i in range(len(my_list)): + if i == 0 and my_list[i] < 0: + result.append(i) + elif my_list[i] != my_list[i - 1] and my_list[i] < 0: + result.append(i) + return result + + +class LayerNorm(nn.LayerNorm): + """Subclass torch's LayerNorm to handle fp16.""" + + def forward(self, x: torch.Tensor): + orig_type = x.dtype + ret = super().forward(x.type(torch.float32)) + return ret.type(orig_type) + + +class MplugOwlVisionEmbeddings(BaseModel): + def __init__(self, hidden_size=1024, image_size=224, patch_size=14, layer_norm_eps=1e-6): + super().__init__() + self.hidden_size = hidden_size + self.image_size = image_size + self.patch_size = patch_size + + self.cls_token = nn.Parameter(torch.randn(1, 1, self.hidden_size)) + + self.patch_embed = nn.Conv2d( + in_channels=3, + out_channels=self.hidden_size, + kernel_size=self.patch_size, + stride=self.patch_size, + bias=False, + ) + + self.num_patches = (self.image_size // self.patch_size) ** 2 + + self.position_embedding = nn.Parameter(torch.randn(1, self.num_patches + 1, self.hidden_size)) + + self.pre_layernorm = LayerNorm(self.hidden_size, eps=layer_norm_eps) + + def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: + batch_size = pixel_values.size(0) + image_embeds = self.patch_embed(pixel_values) + image_embeds = image_embeds.flatten(2).transpose(1, 2) + + class_embeds = self.cls_token.expand(batch_size, 1, -1).to(image_embeds.dtype) + embeddings = torch.cat([class_embeds, image_embeds], dim=1) + embeddings = embeddings + self.position_embedding[:, : embeddings.size(1)].to(image_embeds.dtype) + embeddings = self.pre_layernorm(embeddings) + return embeddings + + +class MplugOwlVisionAttention(BaseModel): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, hidden_size=1024, num_attention_heads=16, attention_dropout=0.0): + super().__init__() + self.hidden_size = hidden_size + self.num_heads = num_attention_heads + self.head_dim = self.hidden_size // self.num_heads + if self.head_dim * self.num_heads != self.hidden_size: + raise ValueError( + f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" + f" {self.num_heads})." + ) + self.scale = self.head_dim**-0.5 + self.dropout = nn.Dropout(attention_dropout) + + self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size) + self.dense = nn.Linear(self.hidden_size, self.hidden_size) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + bsz, seq_len, embed_dim = hidden_states.size() + + mixed_qkv = self.query_key_value(hidden_states) + + mixed_qkv = mixed_qkv.reshape(bsz, seq_len, self.num_heads, 3, embed_dim // self.num_heads).permute( + 3, 0, 2, 1, 4 + ) # [3, b, np, sq, hn] + query_states, key_states, value_states = ( + mixed_qkv[0], + mixed_qkv[1], + mixed_qkv[2], + ) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) + + attention_scores = attention_scores * self.scale + + # Normalize the attention scores to probabilities. + attention_probs = torch.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3) + + new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size,) + context_layer = context_layer.reshape(new_context_layer_shape) + + output = self.dense(context_layer) + + outputs = (output, attention_probs) if output_attentions else (output, None) + + return outputs + + +QuickGLUE = MODELS.bulid(dict(type="QuickGELU")) + + +class MplugOwlMLP(BaseModel): + def __init__(self, hidden_size=1024, intermediate_size=4096): + super().__init__() + self.activation_fn = MODELS.bulid(dict(type="QuickGELU")) + self.fc1 = nn.Linear(hidden_size, intermediate_size) + self.fc2 = nn.Linear(intermediate_size, hidden_size) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.fc1(hidden_states) + hidden_states = self.activation_fn(hidden_states) + hidden_states = self.fc2(hidden_states) + return hidden_states + + +class MplugOwlVisionEncoderLayer(BaseModel): + def __init__(self, hidden_size=1024, intermediate_size=4096, num_attention_heads=16, attention_dropout=0.0, layer_norm_eps=1e-6): + super().__init__() + self.hidden_size = hidden_size + self.self_attn = MplugOwlVisionAttention(hidden_size, num_attention_heads, attention_dropout) + self.input_layernorm = LayerNorm(self.hidden_size, eps=layer_norm_eps) + self.mlp = MplugOwlMLP(hidden_size, intermediate_size) + self.post_attention_layernorm = LayerNorm(self.hidden_size, eps=layer_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: torch.Tensor, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.FloatTensor]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + `(config.encoder_attention_heads,)`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + + hidden_states = self.input_layernorm(hidden_states) + hidden_states, attn_weights = self.self_attn( + hidden_states=hidden_states, + head_mask=attention_mask, + output_attentions=output_attentions, + ) + hidden_states = hidden_states + residual + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + + hidden_states = hidden_states + residual + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +class MplugOwlVisionEncoder(BaseModel): + """ + Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a + [`MplugOwlVisionEncoderLayer`]. + + Args: + config (`MplugOwlVisionConfig`): + The corresponding vision configuration for the `MplugOwlEncoder`. + """ + + def __init__(self, hidden_size=1024, intermediate_size=4096, num_attention_heads=16, attention_dropout=0.0, + layer_norm_eps=1e-6, num_hidden_layers=24): + super().__init__() + self.layers = nn.ModuleList([MplugOwlVisionEncoderLayer(hidden_size, intermediate_size, num_attention_heads, attention_dropout, layer_norm_eps) for _ in range(num_hidden_layers)]) + self.gradient_checkpointing = False + + + def forward( + self, + inputs_embeds, + attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + r""" + Args: + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Embedded representation of the inputs. Should be float, not int tokens. + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + hidden_states = inputs_embeds + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + if self.gradient_checkpointing and self.training: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs, output_attentions) + + return custom_forward + + layer_outputs = torch.utils.checkpoint.checkpoint( + create_custom_forward(encoder_layer), + hidden_states, + attention_mask, + ) + else: + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return ( + hidden_states, encoder_states, all_attentions + ) + + +class MplugOwlVisionModel(BaseModel): + main_input_name = "pixel_values" + + def __init__(self, hidden_size=1024, image_size=224, patch_size=14, intermediate_size=4096, num_attention_heads=16, attention_dropout=0.0,layer_norm_eps=1e-6, num_hidden_layers=24): + super().__init__() + self.hidden_size = hidden_size + + self.embeddings = MplugOwlVisionEmbeddings(hidden_size, image_size, patch_size, layer_norm_eps) + self.encoder = MplugOwlVisionEncoder(hidden_size, intermediate_size, num_attention_heads, attention_dropout, layer_norm_eps, num_hidden_layers) + self.post_layernorm = LayerNorm(self.hidden_size, eps=layer_norm_eps) + + self.post_init() + + + def forward( + self, + pixel_values: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + r""" + Returns: + + """ + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + hidden_states = self.embeddings(pixel_values) + + encoder_outputs = self.encoder( + inputs_embeds=hidden_states, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_state = encoder_outputs[0] + last_hidden_state = self.post_layernorm(last_hidden_state) + + pooled_output = last_hidden_state[:, 0, :] + pooled_output = self.post_layernorm(pooled_output) + + if not return_dict: + return (last_hidden_state, pooled_output) + encoder_outputs[1:] + + return ( + last_hidden_state=last_hidden_state, + pooler_output=pooled_output, + hidden_states=encoder_outputs[1], + attentions=encoder_outputs[2], + ) + + def get_input_embeddings(self): + return self.embeddings + + +class MplugOwlVisualAbstractorMLP(BaseModel): + def __init__(self, hidden_size=1024, intermediate_size=4096, layer_norm_eps=1e-6): + super().__init__() + in_features = hidden_size + self.act = nn.SiLU() + + self.w1 = nn.Linear(in_features, intermediate_size) + self.w2 = nn.Linear(intermediate_size, in_features) + self.w3 = nn.Linear(in_features, intermediate_size) + self.ffn_ln = LayerNorm(intermediate_size, eps=layer_norm_eps) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.act(self.w1(hidden_states)) * self.w3(hidden_states) + hidden_states = self.ffn_ln(hidden_states) + hidden_states = self.w2(hidden_states) + return hidden_states + + +class MplugOwlVisualAbstractorMultiHeadAttention(BaseModel): + def __init__(self, hidden_size=1024, num_attention_heads=16,attention_probs_dropout_prob=0.1, encoder_hidden_size=1024): + super().__init__() + if hidden_size % num_attention_heads != 0: + raise ValueError( + "The hidden size (%d) is not a multiple of the number of attention heads (%d)" + % (hidden_size, num_attention_heads) + ) + + self.num_attention_heads = num_attention_heads + self.attention_head_size = int(hidden_size / num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(hidden_size, self.all_head_size) + self.key = nn.Linear(encoder_hidden_size, self.all_head_size) + self.value = nn.Linear(encoder_hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(attention_probs_dropout_prob) + self.save_attention = False + + def save_attn_gradients(self, attn_gradients): + self.attn_gradients = attn_gradients + + def get_attn_gradients(self): + return self.attn_gradients + + def save_attention_map(self, attention_map): + self.attention_map = attention_map + + def get_attention_map(self): + return self.attention_map + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(*new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=None, + output_attentions=False, + ): + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) + value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) + attention_mask = encoder_attention_mask + + mixed_query_layer = self.query(hidden_states) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in BertModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.Softmax(dim=-1)(attention_scores) + + if self.save_attention: + self.save_attention_map(attention_probs) + attention_probs.register_hook(self.save_attn_gradients) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs_dropped = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs_dropped = attention_probs_dropped * head_mask + + context_layer = torch.matmul(attention_probs_dropped, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(*new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + outputs = outputs + (past_key_value,) + return outputs + + +class MplugOwlVisualAbstractorCrossOutput(BaseModel): + def __init__(self,hidden_size=1024, intermediate_size=4096, layer_norm_eps=1e-6): + super().__init__() + dim = hidden_size + self.out_proj = nn.Linear(dim, dim, bias=True) + self.norm2 = LayerNorm(dim) + self.mlp = MplugOwlVisualAbstractorMLP(hidden_size, intermediate_size, layer_norm_eps) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + input_tensor = input_tensor + self.out_proj(hidden_states) + input_tensor = input_tensor + self.mlp(self.norm2(input_tensor)) + return input_tensor + + +class MplugOwlVisualAbstractorAttention(BaseModel): + def __init__(self, hidden_size=1024, num_attention_heads=16, intermediate_size=4096,attention_probs_dropout_prob=0.1,layer_norm_eps=1e-6,encoder_hidden_size=1024): + super().__init__() + self.attention = MplugOwlVisualAbstractorMultiHeadAttention(hidden_size, num_attention_heads,attention_probs_dropout_prob, encoder_hidden_size) + self.output = MplugOwlVisualAbstractorCrossOutput(hidden_size, intermediate_size, layer_norm_eps) + self.pruned_heads = set() + self.norm1 = LayerNorm(hidden_size) + self.normk = LayerNorm(hidden_size) + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.attention.query = prune_linear_layer(self.attention.query, index) + self.attention.key = prune_linear_layer(self.attention.key, index) + self.attention.value = prune_linear_layer(self.attention.value, index) + self.output.dense = prune_linear_layer(self.output.out_proj, index, dim=1) + + # Update hyper params and store pruned heads + self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) + self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + # HACK we apply norm on q and k + hidden_states = self.norm1(hidden_states) + encoder_hidden_states = self.normk(encoder_hidden_states) + encoder_hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1) + encoder_attention_mask = torch.cat([attention_mask, encoder_attention_mask], dim=-1) + self_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + attention_output = self.output(self_outputs[0], hidden_states) + # add attentions if we output them + outputs = (attention_output,) + self_outputs[1:] + return outputs + + +class MplugOwlVisualAbstractorLayer(BaseModel): + def __init__(self,layer_idx, hidden_size=1024,num_attention_heads=16,intermediate_size=4096,attention_probs_dropout_prob=0.1,layer_norm_eps=1e-6,encoder_hidden_size=1024): + super().__init__() + self.chunk_size_feed_forward = None + self.seq_len_dim = 1 + + self.layer_idx = layer_idx + + self.crossattention = MplugOwlVisualAbstractorAttention(hidden_size, num_attention_heads, intermediate_size, attention_probs_dropout_prob, layer_norm_eps, encoder_hidden_size) + self.has_cross_attention = True + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + output_attentions=False, + ): + if encoder_hidden_states is None: + raise ValueError("encoder_hidden_states must be given for cross-attention layers") + cross_attention_outputs = self.crossattention( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + output_attentions=output_attentions, + ) + query_attention_output = cross_attention_outputs[0] + + outputs = (query_attention_output,) + return outputs + + +class MplugOwlVisualAbstractorEncoder(BaseModel): + def __init__(self,num_hidden_layers=6, hidden_size=1024,num_attention_heads=16,intermediate_size=4096,attention_probs_dropout_prob=0.1,layer_norm_eps=1e-6,encoder_hidden_size=1024): + super().__init__() + self.layers = nn.ModuleList( + [MplugOwlVisualAbstractorLayer(layer_idx, hidden_size,num_attention_heads,intermediate_size,attention_probs_dropout_prob,layer_norm_eps,encoder_hidden_size) for layer_idx in range(num_hidden_layers)] + ) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_values=None, + output_attentions=False, + output_hidden_states=False, + return_dict=True, + ): + all_hidden_states = () if output_hidden_states else None + + for i in range(self.config.num_hidden_layers): + layer_module = self.layers[i] + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[i] if past_key_values is not None else None + + if getattr(self.config, "gradient_checkpointing", False) and self.training: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs, past_key_value, output_attentions) + + return custom_forward + + layer_outputs = torch.utils.checkpoint.checkpoint( + create_custom_forward(layer_module), + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + output_attentions, + ) + + hidden_states = layer_outputs[0] + + return BaseModelOutput( + last_hidden_state=hidden_states, + ) + + +class MplugOwlVisualAbstractorModel(BaseModel): + def __init__(self, config: MplugOwlVisualAbstractorConfig, language_hidden_size): + super().__init__(config) + self.config = config + + self.encoder = MplugOwlVisualAbstractorEncoder(config) + self.visual_fc = torch.nn.Linear(config.hidden_size, language_hidden_size) + self.vit_eos = torch.nn.Parameter(torch.randn(1, 1, language_hidden_size)) + nn.init.trunc_normal_(self.vit_eos, mean=0.0, std=self.config.initializer_range) + self.post_init() + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + def get_extended_attention_mask( + self, + attention_mask: torch.Tensor, + input_shape: Tuple[int], + device: torch.device, + ) -> torch.Tensor: + """ + Makes broadcastable attention and causal masks so that future and masked tokens are ignored. + + Arguments: + attention_mask (`torch.Tensor`): + Mask with ones indicating tokens to attend to, zeros for tokens to ignore. + input_shape (`Tuple[int]`): + The shape of the input to the model. + device: (`torch.device`): + The device of the input to the model. + + Returns: + `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. + """ + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + if attention_mask.dim() == 3: + extended_attention_mask = attention_mask[:, None, :, :] + elif attention_mask.dim() == 2: + # Provided a padding mask of dimensions [batch_size, seq_length] + # - the model is an encoder, so make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] + extended_attention_mask = attention_mask[:, None, None, :] + else: + raise ValueError( + "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( + input_shape, attention_mask.shape + ) + ) + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and -10000.0 for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility + extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 + return extended_attention_mask + + def forward( + self, + query_embeds, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_values=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, `optional`): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of: + shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and + value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are + used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key + value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape + `(batch_size, sequence_length)`. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + embedding_output = query_embeds + input_shape = embedding_output.size()[:-1] + batch_size, seq_length = input_shape + device = embedding_output.device + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + if attention_mask is None: + attention_mask = torch.ones( + (query_embeds.shape[0], query_embeds.shape[1]), dtype=torch.long, device=query_embeds.device + ) + extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if encoder_hidden_states is not None: + if type(encoder_hidden_states) == list: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size() + else: + ( + encoder_batch_size, + encoder_sequence_length, + _, + ) = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + + if type(encoder_attention_mask) == list: + encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask] + elif encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + pooled_output = sequence_output[:, 0, :] + + sequence_output = self.visual_fc(sequence_output) + sequence_output = torch.cat([sequence_output, self.vit_eos.repeat(sequence_output.shape[0], 1, 1)], dim=1) + + return BaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + ) + + +class MplugOwlModel(MplugOwlPreTrainedModel): + config_class = MplugOwlConfig + main_input_name = "pixel_values" + + def __init__(self, config: MplugOwlConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.vision_model = MplugOwlVisionModel(config.vision_config) + + self.query_tokens = nn.Parameter( + torch.zeros(1, config.num_query_tokens, config.visual_abstractor_config.hidden_size) + ) + self.abstractor = MplugOwlVisualAbstractorModel( + config.visual_abstractor_config, config.text_config.hidden_size + ) + + # if config.use_decoder_only_language_model: + # from llama.modeling_llama import LlamaForCausalLM + language_model = AutoModelForCausalLM.from_config(config.text_config) + # else: + # language_model = AutoModelForSeq2SeqLM.from_config(config.text_config) + self.language_model = language_model + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.language_model.get_input_embeddings() + + def set_input_embeddings(self, value): + self.language_model.set_input_embeddings(value) + + def set_output_embeddings(self, new_embeddings): + self.language_model.set_output_embeddings(new_embeddings) + + def get_output_embeddings(self) -> nn.Module: + return self.language_model.get_output_embeddings() + + def get_encoder(self): + return self.language_model.get_encoder() + + def get_decoder(self): + return self.language_model.get_decoder() + + def _tie_weights(self): + if not self.config.use_decoder_only_language_model: + self.language_model.encoder.embed_tokens = self.language_model.shared + self.language_model.decoder.embed_tokens = self.language_model.shared + + def get_text_features( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.Tensor] = None, + decoder_attention_mask: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if self.config.use_decoder_only_language_model: + text_outputs = self.language_model( + input_ids=input_ids, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + else: + inputs_embeds = self.language_model.get_input_embeddings()(input_ids) + + text_outputs = self.language_model( + inputs_embeds=inputs_embeds, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + labels=labels, + ) + + return text_outputs + + def get_image_features( + self, + pixel_values: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + if pixel_values is not None: + pixel_values = pixel_values.to(self.vision_model.embeddings.cls_token.data.dtype) + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + vision_outputs = self.vision_model( + pixel_values=pixel_values, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + return vision_outputs + + +# Hack for bloomz +def bloom_forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **deprecated_arguments, +) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: + if deprecated_arguments.pop("position_ids", False) is not False: + # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` + warnings.warn( + "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" + " passing `position_ids`.", + FutureWarning, + ) + if len(deprecated_arguments) > 0: + raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + batch_size, seq_length = input_ids.shape + elif inputs_embeds is not None: + batch_size, seq_length, _ = inputs_embeds.shape + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if past_key_values is None: + past_key_values = tuple([None] * len(self.h)) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape batch_size x num_heads x N x N + # head_mask has shape n_layer x batch x num_heads x N x N + head_mask = self.get_head_mask(head_mask, self.config.n_layer) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + inputs_embeds = self.word_embeddings_layernorm(inputs_embeds) + + hidden_states = inputs_embeds + + presents = () if use_cache else None + all_self_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + # Compute alibi tensor: check build_alibi_tensor documentation + seq_length_with_past = seq_length + past_key_values_length = 0 + if past_key_values[0] is not None: + past_key_values_length = past_key_values[0][0].shape[2] + seq_length_with_past = seq_length_with_past + past_key_values_length + if attention_mask is None: + attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) + else: + attention_mask = attention_mask.to(hidden_states.device) + + alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype) + + causal_mask = self._prepare_attn_mask( + attention_mask, + input_shape=(batch_size, seq_length), + past_key_values_length=past_key_values_length, + ) + + for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + + def create_custom_forward(module): + def custom_forward(*inputs): + # None for past_key_value + return module(*inputs, use_cache=use_cache, output_attentions=output_attentions) + + return custom_forward + + outputs = torch.utils.checkpoint.checkpoint( + create_custom_forward(block), + hidden_states, + alibi, + causal_mask, + layer_past, + head_mask[i], + ) + else: + outputs = block( + hidden_states, + layer_past=layer_past, + attention_mask=causal_mask, + head_mask=head_mask[i], + use_cache=use_cache, + output_attentions=output_attentions, + alibi=alibi, + ) + + hidden_states = outputs[0] + if use_cache is True: + presents = presents + (outputs[1],) + + if output_attentions: + all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) + + # Add last hidden state + hidden_states = self.ln_f(hidden_states) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) + + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=presents, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + +@MODELS.register_module() +class mPLUGOwl(BaseModel): + def __init__(self,): + pass + +