[Enhance] Upgrade isort pre-commit hooks. (#687)
* Use new version flake8 and isort hooks * Fix missing copyrightpull/692/head
parent
44e9902979
commit
fcd57913ae
|
@ -1,15 +1,11 @@
|
|||
exclude: ^tests/data/
|
||||
repos:
|
||||
- repo: https://gitlab.com/pycqa/flake8.git
|
||||
rev: 3.8.3
|
||||
- repo: https://github.com/PyCQA/flake8
|
||||
rev: 4.0.1
|
||||
hooks:
|
||||
- id: flake8
|
||||
- repo: https://github.com/asottile/seed-isort-config
|
||||
rev: v2.2.0
|
||||
hooks:
|
||||
- id: seed-isort-config
|
||||
- repo: https://github.com/timothycrosley/isort
|
||||
rev: 4.3.21
|
||||
- repo: https://github.com/PyCQA/isort
|
||||
rev: 5.10.1
|
||||
hooks:
|
||||
- id: isort
|
||||
- repo: https://github.com/pre-commit/mirrors-yapf
|
||||
|
|
|
@ -115,7 +115,7 @@ def train_model(model,
|
|||
else:
|
||||
model = MMDataParallel(model, device_ids=cfg.gpu_ids)
|
||||
if not model.device_ids:
|
||||
from mmcv import digit_version, __version__
|
||||
from mmcv import __version__, digit_version
|
||||
assert digit_version(__version__) >= (1, 4, 4), \
|
||||
'To train with CPU, please confirm your mmcv version ' \
|
||||
'is not lower than v1.4.4'
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from .lamb import Lamb
|
||||
|
||||
__all__ = [
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from .image import (BaseFigureContextManager, ImshowInfosContextManager,
|
||||
color_val_matplotlib, imshow_infos)
|
||||
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import matplotlib.pyplot as plt
|
||||
import mmcv
|
||||
import numpy as np
|
||||
|
|
|
@ -25,8 +25,8 @@ SAMPLERS = Registry('sampler')
|
|||
|
||||
|
||||
def build_dataset(cfg, default_args=None):
|
||||
from .dataset_wrappers import (ConcatDataset, RepeatDataset,
|
||||
ClassBalancedDataset, KFoldDataset)
|
||||
from .dataset_wrappers import (ClassBalancedDataset, ConcatDataset,
|
||||
KFoldDataset, RepeatDataset)
|
||||
if isinstance(cfg, (list, tuple)):
|
||||
dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg])
|
||||
elif cfg['type'] == 'RepeatDataset':
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from typing import Sequence
|
||||
|
||||
import torch
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.checkpoint as cp
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
|
|
|
@ -12,9 +12,8 @@ split_before_expression_after_opening_paren = true
|
|||
[isort]
|
||||
line_length = 79
|
||||
multi_line_output = 0
|
||||
known_standard_library = pkg_resources,setuptools
|
||||
extra_standard_library = pkg_resources,setuptools
|
||||
known_first_party = mmcls
|
||||
known_third_party = PIL,cv2,matplotlib,mmcv,mmdet,modelindex,numpy,onnxruntime,packaging,pytest,pytorch_sphinx_theme,requests,rich,sphinx,tensorflow,torch,torchvision,ts
|
||||
no_lines_before = STDLIB,LOCALFOLDER
|
||||
default_section = THIRDPARTY
|
||||
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# small RetinaNet
|
||||
num_classes = 3
|
||||
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import os.path as osp
|
||||
from copy import deepcopy
|
||||
from unittest.mock import patch
|
||||
|
|
|
@ -760,7 +760,7 @@ def test_equalize(nb_rand_test=100):
|
|||
|
||||
def _imequalize(img):
|
||||
# equalize the image using PIL.ImageOps.equalize
|
||||
from PIL import ImageOps, Image
|
||||
from PIL import Image, ImageOps
|
||||
img = Image.fromarray(img)
|
||||
equalized_img = np.asarray(ImageOps.equalize(img))
|
||||
return equalized_img
|
||||
|
@ -932,8 +932,9 @@ def test_posterize():
|
|||
def test_contrast(nb_rand_test=100):
|
||||
|
||||
def _adjust_contrast(img, factor):
|
||||
from PIL.ImageEnhance import Contrast
|
||||
from PIL import Image
|
||||
from PIL.ImageEnhance import Contrast
|
||||
|
||||
# Image.fromarray defaultly supports RGB, not BGR.
|
||||
# convert from BGR to RGB
|
||||
img = Image.fromarray(img[..., ::-1], mode='RGB')
|
||||
|
@ -1066,8 +1067,8 @@ def test_brightness(nb_rand_test=100):
|
|||
def _adjust_brightness(img, factor):
|
||||
# adjust the brightness of image using
|
||||
# PIL.ImageEnhance.Brightness
|
||||
from PIL.ImageEnhance import Brightness
|
||||
from PIL import Image
|
||||
from PIL.ImageEnhance import Brightness
|
||||
img = Image.fromarray(img)
|
||||
brightened_img = Brightness(img).enhance(factor)
|
||||
return np.asarray(brightened_img)
|
||||
|
@ -1128,8 +1129,8 @@ def test_sharpness(nb_rand_test=100):
|
|||
def _adjust_sharpness(img, factor):
|
||||
# adjust the sharpness of image using
|
||||
# PIL.ImageEnhance.Sharpness
|
||||
from PIL.ImageEnhance import Sharpness
|
||||
from PIL import Image
|
||||
from PIL.ImageEnhance import Sharpness
|
||||
img = Image.fromarray(img)
|
||||
sharpened_img = Sharpness(img).enhance(factor)
|
||||
return np.asarray(sharpened_img)
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import pytest
|
||||
import torch
|
||||
from torch.nn.modules import GroupNorm
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import os
|
||||
import tempfile
|
||||
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import pytest
|
||||
import torch
|
||||
from torch.nn.modules import GroupNorm
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import logging
|
||||
import shutil
|
||||
import tempfile
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import logging
|
||||
import tempfile
|
||||
from unittest.mock import MagicMock
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import functools
|
||||
from collections import OrderedDict
|
||||
from copy import deepcopy
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import numpy as np
|
||||
import pytest
|
||||
import torch
|
||||
|
|
|
@ -52,8 +52,8 @@ def onnx2tensorrt(onnx_file,
|
|||
print(f'Successfully created TensorRT engine: {trt_file}')
|
||||
|
||||
if verify:
|
||||
import torch
|
||||
import onnxruntime as ort
|
||||
import torch
|
||||
|
||||
input_img = torch.randn(*input_shape)
|
||||
input_img_cpu = input_img.detach().cpu().numpy()
|
||||
|
|
|
@ -108,9 +108,9 @@ def pytorch2onnx(model,
|
|||
model.forward = origin_forward
|
||||
|
||||
if do_simplify:
|
||||
from mmcv import digit_version
|
||||
import onnxsim
|
||||
import onnx
|
||||
import onnxsim
|
||||
from mmcv import digit_version
|
||||
|
||||
min_required_version = '0.3.0'
|
||||
assert digit_version(mmcv.__version__) >= digit_version(
|
||||
|
|
|
@ -17,10 +17,10 @@ from mmcls.apis import init_model
|
|||
from mmcls.datasets.pipelines import Compose
|
||||
|
||||
try:
|
||||
from pytorch_grad_cam import (EigenCAM, GradCAM, GradCAMPlusPlus, XGradCAM,
|
||||
EigenGradCAM, LayerCAM)
|
||||
from pytorch_grad_cam.activations_and_gradients import (
|
||||
ActivationsAndGradients)
|
||||
from pytorch_grad_cam import (EigenCAM, EigenGradCAM, GradCAM,
|
||||
GradCAMPlusPlus, LayerCAM, XGradCAM)
|
||||
from pytorch_grad_cam.activations_and_gradients import \
|
||||
ActivationsAndGradients
|
||||
from pytorch_grad_cam.utils.image import show_cam_on_image
|
||||
except ImportError:
|
||||
raise ImportError('Please run `pip install "grad-cam>=1.3.6"` to install '
|
||||
|
@ -336,8 +336,8 @@ def main():
|
|||
if args.target_category:
|
||||
grad_cam_v = pkg_resources.get_distribution('grad_cam').version
|
||||
if digit_version(grad_cam_v) >= digit_version('1.3.7'):
|
||||
from pytorch_grad_cam.utils.model_targets import (
|
||||
ClassifierOutputTarget)
|
||||
from pytorch_grad_cam.utils.model_targets import \
|
||||
ClassifierOutputTarget
|
||||
targets = [ClassifierOutputTarget(c) for c in args.target_category]
|
||||
else:
|
||||
targets = args.target_category
|
||||
|
|
Loading…
Reference in New Issue