* Add Res2Net from mmdet, and change it to mmcls style.
* Align structure with official repo
* Support `deep_stem` and `avg_down` option
* Add Res2Net configs
* Add metafile&README and update model zoo
* Add unit tests
* Imporve docstring.
* Improve according to comments.
* Add RepVGG code.
* Add se_module as plugin.
* Add the repvggA0 primitive config
* Change repvggA0.py to fit mmcls
* Add RepVGG configs
* Add repvgg_to_mmcls
* Add tools/deployment/convert_repvggblock_param_to_deploy.py
* Change configs/repvgg/README.md
* Streamlining the number of configuration files.
* Fix lints
* Delete plugins
* Delete code about plugin.
* Modify the code for using se module.
* Modify config to fit repvgg with se.
* Change se_cfg to allow loading of pre-training parameters.
* Reduce the complexity of the configuration file.
* Finsh unitest for repvgg.
* Fix bug about se in repvgg_to_mmcls.
* Rename convert_repvggblock_param_to_deploy.py to reparameterize_repvgg.py, and delete setting about device.
* test commit
* test commit
* test commit command
* Modify repvgg.py to make the code more readable.
* Add value=0 in F.pad()
* Add se_cfg to arch_settings.
* Fix bug.
* modeify some attr name and Update unit tests
* rename stage_0 to stem and branch_identity to branch_norm
* update unit tests
* add m.eval in unit tests
* [Enhance] Enhence SE layer to support custom squeeze channels. (#417)
* add enhenced SE
* Update
* rm basechannel
* fix docstring
* Update se_layer.py
fix docstring
* [Docs] Add algorithm readme and update meta yml (#418)
* Add README.md for models without checkpoints.
* Update model-index.yml
* Update metafile.yml of seresnet
* [Enhance] Add `hparams` argument in `AutoAugment` and `RandAugment` and some other improvement. (#398)
* Add hparams argument in `AutoAugment` and `RandAugment`.
And `pad_val` supports sequence instead of tuple only.
* Add unit tests for `AutoAugment` and `hparams` in `RandAugment`.
* Use smaller test image to speed up uni tests.
* Use hparams to simplify RandAugment config in swin-transformer.
* Rename augment config name from `pipeline` to `pipelines`.
* Add some commnet ad docstring.
* [Feature] Support classwise weight in losses (#388)
* Add classwise weight in losses:CE,BCE,softBCE
* Update unit test
* rm some extra code
* rm some extra code
* fix broadcast
* fix broadcast
* update unit tests
* use new_tensor
* fix lint
* [Enhance] Better result visualization (#419)
* Imporve result visualization to support wait time and change the backend
to matplotlib.
* Add unit test for visualization
* Add adaptive dpi function
* Rename `imshow_cls_result` to `imshow_infos`.
* Support str in `imshow_infos`
* Improve docstring.
* Bump version to v0.15.0 (#426)
* [CI] Add PyTorch 1.9 and Python 3.9 build workflow, and remove some CI. (#422)
* Add PyTorch 1.9 build workflow, and remove some CI.
* Add Python 3.9 CI
* Show Python 3.9 support.
* [Enhance] Rename the option `--options` in some tools to `--cfg-options`. (#425)
* [Docs] Fix sphinx version (#429)
* [Docs] Add `CITATION.cff` (#428)
* Add CITATION.cff
* Fix typo in setup.py
* Change author in setup.py
* modeify some attr name and Update unit tests
* rename stage_0 to stem and branch_identity to branch_norm
* update unit tests
* add m.eval in unit tests
* Update unit tests
* refactor
* refactor
* Alignment inference accuracy
* Update configs, readme and metafile
* Update readme
* return tuple and fix metafile
* fix unit test
* rm regnet and classifiers changes
* update auto_aug
* update metafile & readme
* use delattr
* rename cfgs
* Update checkpoint url
* Update readme
* Rename config files.
* Update readme and metafile
* add comment
* Update mmcls/models/backbones/repvgg.py
Co-authored-by: Ma Zerun <mzr1996@163.com>
* Update docstring
* Improve docstring.
* Update unittest_testblock
Co-authored-by: Ezra-Yu <1105212286@qq.com>
Co-authored-by: Ma Zerun <mzr1996@163.com>
* Add wrapper to use backbones from timm
* Add tests
* Remove timm from optional deps and modify GitHub workflow.
Co-authored-by: mzr1996 <mzr1996@163.com>
* Add swin transformer archs S, B and L.
* Add SwinTransformer configs
* Add train config files of swin.
* Align init method with original code
* Use nn.Unfold to merge patch
* Change all ConfigDict to dict
* Add init_cfg for all subclasses of BaseModule.
* Use mmcv version init function
* Add Swin README
* Use safer cfg copy method
* Improve docstring and variable name.
* Fix some difference in randaug
Fix BGR bug, align scheduler config.
Fix label smoothing parameter difference.
* Fix missing droppath in attn
* Fix bug of relative posititon table if window width is not equal to
height.
* Make `PatchMerging` more general, support kernel, stride, padding and
dilation.
* Rename `residual` to `identity` in attention and FFN.
* Add `auto_pad` option to auto pad feature map
* Improve docstring.
* Fix bug in ShiftWMSA padding.
* Remove unused `key` and `value` in ShiftWMSA
* Move `PatchMerging` into utils and use common `PatchEmbed`.
* Use latest `LinearClsHead`, train augments and label smooth settings.
And remove original `SwinLinearClsHead`.
* Mark some configs as "Evalution Only".
* Remove useless comment in config
* 1. Move ShiftWindowMSA and WindowMSA to `utils/attention.py`
2. Add docstrings of each module.
3. Fix some variables' names.
4. Other small improvement.
* Add unit tests of swin-transformer and patchmerging.
* Fix some bugs in unit tests.
* Fix bug of rel_position_index if window is not square.
* Make WindowMSA implicit, and add unit tests.
* Add metafile.yml, update readme and model_zoo.
* Refactor Mobilenetv3 structure and add ConvClsHead.
* Change model's name from 'MobileNetv3' to 'MobileNetV3'
* Modify configs for MobileNetV3 on CIFAR10.
And add MobileNetV3 configs for imagenet
* Fix activate setting bugs in MobileNetV3.
And remove bias in SELayer.
* Modify unittest
* Remove useless config and file.
* Fix mobilenetv3-large arch setting
* Add dropout option in ConvClsHead
* Fix MobilenetV3 structure according to torchvision version.
1. Remove with_expand_conv option in InvertedResidual, it should be decided by channels.
2. Revert activation function, should before SE layer.
* Format code.
* Rename MobilenetV3 arch "big" to "large".
* Add mobilenetv3_small torchvision training recipe
* Modify default `out_indices` of MobilenetV3, now it will change
according to `arch` if not specified.
* Add MobilenetV3 large config.
* Add mobilenetv3 README
* Modify InvertedResidual unit test.
* Refactor ConvClsHead to StackedLinearClsHead, and add unit tests.
* Add unit test for `simple_test` of `StackedLinearClsHead`.
* Fix typo
Co-authored-by: Yidi Shao <ydshao@smail.nju.edu.cn>