* Fix MobileNet V3 configs
* Refactor to support more powerful feature extraction.
* Add unit tests
* Fix unit test
* Imporve according to comments
* Update checkpoints path
* Fix unit tests
* Add docstring of `simple_test`
* Add docstring of `extract_feat`
* Update model zoo
* Defaults to return tuple in all backbones.
* Compat downstream of swin transformer.
* Support tuple input for multi label head and stacked head.
* Fix backbone unit tests for tuple output.
* Add downstream inference unit tests for mmdet.
* Update gitignore
* Add unit tests for `return_tuple` option
* Add unit tests for head input tuple.
* Add warning in `simple_test`
* Add TIMMBackbone return tuple.
* Modify timm backbone unit test.
* add mytrain.py for test
* test before layers
* test attr in layers
* test classifier
* delete mytrain.py
* set cal_acc in ClsHead defaults to False
* set cal_acc defaults to False
* use *args, **kwargs instead
* change bs16 to 3 in test_image_classifier_vit
* fix some comments
* change cal_acc=True
* test LinearClsHead
* add model inference on single image
* rm --eval
* revise doc
* add inference tool and demo
* fix linting
* rename inference_image to inference_model
* infer pred_label and pred_score
* fix linting
* add docstr for inference
* add remove_keys
* add doc for inference
* dump results rather than outputs
* add class_names
* add related infer scripts
* add demo image and the first part of colab tutorial
* conduct evaluation in dataset
* return lst in simple_test
* compuate topk accuracy with numpy
* return outputs in test api
* merge inference and evaluation tool
* fix typo
* rm gt_labels in test conifg
* get gt_labels during evaluation
* sperate the ipython notebook to another PR
* return tensor for onnx_export
* detach var in simple_test
* rm inference script
* rm inference script
* construct data dict to replace LoadImage
* print first predicted result if args.out is None
* modify test_pipeline in inference
* refactor class_names of imagenet
* set class_to_idx as a property in base dataset
* output pred_class during inference
* remove unused docstr