* Fix MobileNet V3 configs
* Refactor to support more powerful feature extraction.
* Add unit tests
* Fix unit test
* Imporve according to comments
* Update checkpoints path
* Fix unit tests
* Add docstring of `simple_test`
* Add docstring of `extract_feat`
* Update model zoo
* Support DeiT backbone.
* Use hook to automatically resize pos embed
* Update ViT training setting
* Add deit configs and update docs
* Fix vit arch assertion
* Remove useless init function
* Add unit tests.
* Fix resize_pos_embed for DeiT
* Improve according to comments.
* implement the conformer
* format code style
* format code style
* reuse the TransformerEncoderLayer in the vision_transformer.py
* Modify variable name
* delete unused params
* Remove warning info in Conformer head since it already exists in
Conformer.
* Rename some variables
* Add unit tests
* Use `getattr` instead of `get_submodule`.
* Remove some useless layers
* Refactor conformer and add configs
* Update configs and add metafile.
* Fix unit tests
* Update README
Co-authored-by: mzr1996 <mzr1996@163.com>
* [Squash] Refator ViT (from #295)
* Use base variable to simplify auto_aug setting
* Use common PatchEmbed, remove HybridEmbed and refactor ViT init
structure.
* Add `output_cls_token` option and change the output format of ViT and
input format of ViT head.
* Update unit tests and add test for `output_cls_token`.
* Support out_indices.
* Standardize config files
* Support resize position embedding.
* Add readme file of vit
* Rename config file
* Improve docs about ViT.
* Update docstring
* Use local version `MultiheadAttention` instead of mmcv version.
* Fix MultiheadAttention
* Support `qk_scale` argument in `MultiheadAttention`
* Improve docs and change `layer_cfg` to `layer_cfgs` and support
sequence.
* Use init_cfg to init Linear layer in VisionTransformerHead
* update metafile
* Update checkpoints and configs
* Imporve docstring.
* Update README
* Revert GAP modification.
* Defaults to return tuple in all backbones.
* Compat downstream of swin transformer.
* Support tuple input for multi label head and stacked head.
* Fix backbone unit tests for tuple output.
* Add downstream inference unit tests for mmdet.
* Update gitignore
* Add unit tests for `return_tuple` option
* Add unit tests for head input tuple.
* Add warning in `simple_test`
* Add TIMMBackbone return tuple.
* Modify timm backbone unit test.
* Refactor Mobilenetv3 structure and add ConvClsHead.
* Change model's name from 'MobileNetv3' to 'MobileNetV3'
* Modify configs for MobileNetV3 on CIFAR10.
And add MobileNetV3 configs for imagenet
* Fix activate setting bugs in MobileNetV3.
And remove bias in SELayer.
* Modify unittest
* Remove useless config and file.
* Fix mobilenetv3-large arch setting
* Add dropout option in ConvClsHead
* Fix MobilenetV3 structure according to torchvision version.
1. Remove with_expand_conv option in InvertedResidual, it should be decided by channels.
2. Revert activation function, should before SE layer.
* Format code.
* Rename MobilenetV3 arch "big" to "large".
* Add mobilenetv3_small torchvision training recipe
* Modify default `out_indices` of MobilenetV3, now it will change
according to `arch` if not specified.
* Add MobilenetV3 large config.
* Add mobilenetv3 README
* Modify InvertedResidual unit test.
* Refactor ConvClsHead to StackedLinearClsHead, and add unit tests.
* Add unit test for `simple_test` of `StackedLinearClsHead`.
* Fix typo
Co-authored-by: Yidi Shao <ydshao@smail.nju.edu.cn>
* add mytrain.py for test
* test before layers
* test attr in layers
* test classifier
* delete mytrain.py
* move init_cfg to parameter
* isort
* Use a sentinel value to denote the default init_cfg
* add mytrain.py for test
* test before layers
* test attr in layers
* test classifier
* delete mytrain.py
* set cal_acc in ClsHead defaults to False
* set cal_acc defaults to False
* use *args, **kwargs instead
* change bs16 to 3 in test_image_classifier_vit
* fix some comments
* change cal_acc=True
* test LinearClsHead
* resolve conflicts
add heads and config for multilabel tasks
* minor change
* remove evaluating mAP in head
* add baseline config
* add configs
* reserve only one config
* minor change
* fix minor bug
* minor change
* minor change
* add unittests and fix docstrings
* add model inference on single image
* rm --eval
* revise doc
* add inference tool and demo
* fix linting
* rename inference_image to inference_model
* infer pred_label and pred_score
* fix linting
* add docstr for inference
* add remove_keys
* add doc for inference
* dump results rather than outputs
* add class_names
* add related infer scripts
* add demo image and the first part of colab tutorial
* conduct evaluation in dataset
* return lst in simple_test
* compuate topk accuracy with numpy
* return outputs in test api
* merge inference and evaluation tool
* fix typo
* rm gt_labels in test conifg
* get gt_labels during evaluation
* sperate the ipython notebook to another PR
* return tensor for onnx_export
* detach var in simple_test
* rm inference script
* rm inference script
* construct data dict to replace LoadImage
* print first predicted result if args.out is None
* modify test_pipeline in inference
* refactor class_names of imagenet
* set class_to_idx as a property in base dataset
* output pred_class during inference
* remove unused docstr