_base_ = [ '../_base_/models/efficientnet_v2/efficientnetv2_b0.py', '../_base_/datasets/imagenet_bs32.py', '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py', ] # dataset settings dataset_type = 'ImageNet' data_preprocessor = dict( num_classes=1000, # RGB format normalization parameters mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], # convert image from BGR to RGB to_rgb=True, ) bgr_mean = data_preprocessor['mean'][::-1] bgr_std = data_preprocessor['std'][::-1] train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='RandomResizedCrop', scale=192, backend='pillow', interpolation='bicubic'), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict( type='RandAugment', policies='timm_increasing', num_policies=2, total_level=10, magnitude_level=9, magnitude_std=0.5, hparams=dict( pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')), dict( type='RandomErasing', erase_prob=0.25, mode='rand', min_area_ratio=0.02, max_area_ratio=1 / 3, fill_color=bgr_mean, fill_std=bgr_std), dict(type='PackInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='EfficientNetCenterCrop', crop_size=224, crop_padding=0), dict(type='PackInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = dict(dataset=dict(pipeline=test_pipeline))