model = dict( type='ImageClassifier', backbone=dict( type='BEiTViT', arch='l', img_size=224, patch_size=14, layer_scale_init_value=0.0, out_type='avg_featmap', use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, layer_cfgs=dict(bias=True), ), neck=None, head=None, ) data_preprocessor = dict( # RGB format normalization parameters mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255], std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255], # convert image from BGR to RGB to_rgb=True, )