# Copyright (c) OpenMMLab. All rights reserved. import copy from unittest import TestCase import numpy as np import torch from mmpretrain.evaluation.metrics import (Accuracy, ConfusionMatrix, SingleLabelMetric) from mmpretrain.registry import METRICS from mmpretrain.structures import DataSample class TestAccuracy(TestCase): def test_evaluate(self): """Test using the metric in the same way as Evalutor.""" pred = [ DataSample().set_pred_score(i).set_pred_label(j).set_gt_label( k).to_dict() for i, j, k in zip([ torch.tensor([0.7, 0.0, 0.3]), torch.tensor([0.5, 0.2, 0.3]), torch.tensor([0.4, 0.5, 0.1]), torch.tensor([0.0, 0.0, 1.0]), torch.tensor([0.0, 0.0, 1.0]), torch.tensor([0.0, 0.0, 1.0]), ], [0, 0, 1, 2, 2, 2], [0, 0, 1, 2, 1, 0]) ] # Test with score (use score instead of label if score exists) metric = METRICS.build(dict(type='Accuracy', thrs=0.6)) metric.process(None, pred) acc = metric.evaluate(6) self.assertIsInstance(acc, dict) self.assertAlmostEqual(acc['accuracy/top1'], 2 / 6 * 100, places=4) # Test with multiple thrs metric = METRICS.build(dict(type='Accuracy', thrs=(0., 0.6, None))) metric.process(None, pred) acc = metric.evaluate(6) self.assertSetEqual( set(acc.keys()), { 'accuracy/top1_thr-0.00', 'accuracy/top1_thr-0.60', 'accuracy/top1_no-thr' }) # Test with invalid topk with self.assertRaisesRegex(ValueError, 'check the `val_evaluator`'): metric = METRICS.build(dict(type='Accuracy', topk=(1, 5))) metric.process(None, pred) metric.evaluate(6) # Test with label for sample in pred: del sample['pred_score'] metric = METRICS.build(dict(type='Accuracy', thrs=(0., 0.6, None))) metric.process(None, pred) acc = metric.evaluate(6) self.assertIsInstance(acc, dict) self.assertAlmostEqual(acc['accuracy/top1'], 4 / 6 * 100, places=4) # Test initialization metric = METRICS.build(dict(type='Accuracy', thrs=0.6)) self.assertTupleEqual(metric.thrs, (0.6, )) metric = METRICS.build(dict(type='Accuracy', thrs=[0.6])) self.assertTupleEqual(metric.thrs, (0.6, )) metric = METRICS.build(dict(type='Accuracy', topk=5)) self.assertTupleEqual(metric.topk, (5, )) metric = METRICS.build(dict(type='Accuracy', topk=[5])) self.assertTupleEqual(metric.topk, (5, )) def test_calculate(self): """Test using the metric from static method.""" # Test with score y_true = np.array([0, 0, 1, 2, 1, 0]) y_label = torch.tensor([0, 0, 1, 2, 2, 2]) y_score = [ [0.7, 0.0, 0.3], [0.5, 0.2, 0.3], [0.4, 0.5, 0.1], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], ] # Test with score acc = Accuracy.calculate(y_score, y_true, thrs=(0.6, )) self.assertIsInstance(acc, list) self.assertIsInstance(acc[0], list) self.assertIsInstance(acc[0][0], torch.Tensor) self.assertTensorEqual(acc[0][0], 2 / 6 * 100) # Test with label acc = Accuracy.calculate(y_label, y_true, thrs=(0.6, )) self.assertIsInstance(acc, torch.Tensor) # the thrs will be ignored self.assertTensorEqual(acc, 4 / 6 * 100) # Test with invalid inputs with self.assertRaisesRegex(TypeError, " is not"): Accuracy.calculate(y_label, 'hi') # Test with invalid topk with self.assertRaisesRegex(ValueError, 'Top-5 accuracy .* is 3'): Accuracy.calculate(y_score, y_true, topk=(1, 5)) def assertTensorEqual(self, tensor: torch.Tensor, value: float, msg=None, **kwarg): tensor = tensor.to(torch.float32) value = torch.FloatTensor([value]) try: torch.testing.assert_allclose(tensor, value, **kwarg) except AssertionError as e: self.fail(self._formatMessage(msg, str(e))) class TestSingleLabel(TestCase): def test_evaluate(self): """Test using the metric in the same way as Evalutor.""" pred = [ DataSample().set_pred_score(i).set_pred_label(j).set_gt_label( k).to_dict() for i, j, k in zip([ torch.tensor([0.7, 0.0, 0.3]), torch.tensor([0.5, 0.2, 0.3]), torch.tensor([0.4, 0.5, 0.1]), torch.tensor([0.0, 0.0, 1.0]), torch.tensor([0.0, 0.0, 1.0]), torch.tensor([0.0, 0.0, 1.0]), ], [0, 0, 1, 2, 2, 2], [0, 0, 1, 2, 1, 0]) ] # Test with score (use score instead of label if score exists) metric = METRICS.build( dict( type='SingleLabelMetric', thrs=0.6, items=('precision', 'recall', 'f1-score', 'support'))) metric.process(None, pred) res = metric.evaluate(6) self.assertIsInstance(res, dict) self.assertAlmostEqual( res['single-label/precision'], (1 + 0 + 1 / 3) / 3 * 100, places=4) self.assertAlmostEqual( res['single-label/recall'], (1 / 3 + 0 + 1) / 3 * 100, places=4) self.assertAlmostEqual( res['single-label/f1-score'], (1 / 2 + 0 + 1 / 2) / 3 * 100, places=4) self.assertEqual(res['single-label/support'], 6) # Test with multiple thrs metric = METRICS.build( dict(type='SingleLabelMetric', thrs=(0., 0.6, None))) metric.process(None, pred) res = metric.evaluate(6) self.assertSetEqual( set(res.keys()), { 'single-label/precision_thr-0.00', 'single-label/recall_thr-0.00', 'single-label/f1-score_thr-0.00', 'single-label/precision_thr-0.60', 'single-label/recall_thr-0.60', 'single-label/f1-score_thr-0.60', 'single-label/precision_no-thr', 'single-label/recall_no-thr', 'single-label/f1-score_no-thr' }) # Test with average mode "micro" metric = METRICS.build( dict( type='SingleLabelMetric', average='micro', items=('precision', 'recall', 'f1-score', 'support'))) metric.process(None, pred) res = metric.evaluate(6) self.assertIsInstance(res, dict) self.assertAlmostEqual( res['single-label/precision_micro'], 66.666, places=2) self.assertAlmostEqual( res['single-label/recall_micro'], 66.666, places=2) self.assertAlmostEqual( res['single-label/f1-score_micro'], 66.666, places=2) self.assertEqual(res['single-label/support_micro'], 6) # Test with average mode None metric = METRICS.build( dict( type='SingleLabelMetric', average=None, items=('precision', 'recall', 'f1-score', 'support'))) metric.process(None, pred) res = metric.evaluate(6) self.assertIsInstance(res, dict) precision = res['single-label/precision_classwise'] self.assertAlmostEqual(precision[0], 100., places=4) self.assertAlmostEqual(precision[1], 100., places=4) self.assertAlmostEqual(precision[2], 1 / 3 * 100, places=4) recall = res['single-label/recall_classwise'] self.assertAlmostEqual(recall[0], 2 / 3 * 100, places=4) self.assertAlmostEqual(recall[1], 50., places=4) self.assertAlmostEqual(recall[2], 100., places=4) f1_score = res['single-label/f1-score_classwise'] self.assertAlmostEqual(f1_score[0], 80., places=4) self.assertAlmostEqual(f1_score[1], 2 / 3 * 100, places=4) self.assertAlmostEqual(f1_score[2], 50., places=4) self.assertEqual(res['single-label/support_classwise'], [3, 2, 1]) # Test with label, the thrs will be ignored pred_no_score = copy.deepcopy(pred) for sample in pred_no_score: del sample['pred_score'] del sample['num_classes'] metric = METRICS.build( dict(type='SingleLabelMetric', thrs=(0., 0.6), num_classes=3)) metric.process(None, pred_no_score) res = metric.evaluate(6) self.assertIsInstance(res, dict) # Expected values come from sklearn self.assertAlmostEqual(res['single-label/precision'], 77.777, places=2) self.assertAlmostEqual(res['single-label/recall'], 72.222, places=2) self.assertAlmostEqual(res['single-label/f1-score'], 65.555, places=2) metric = METRICS.build(dict(type='SingleLabelMetric', thrs=(0., 0.6))) with self.assertRaisesRegex(AssertionError, 'must be specified'): metric.process(None, pred_no_score) # Test with empty items metric = METRICS.build( dict(type='SingleLabelMetric', items=tuple(), num_classes=3)) metric.process(None, pred) res = metric.evaluate(6) self.assertIsInstance(res, dict) self.assertEqual(len(res), 0) metric.process(None, pred_no_score) res = metric.evaluate(6) self.assertIsInstance(res, dict) self.assertEqual(len(res), 0) # Test initialization metric = METRICS.build(dict(type='SingleLabelMetric', thrs=0.6)) self.assertTupleEqual(metric.thrs, (0.6, )) metric = METRICS.build(dict(type='SingleLabelMetric', thrs=[0.6])) self.assertTupleEqual(metric.thrs, (0.6, )) def test_calculate(self): """Test using the metric from static method.""" # Test with score y_true = np.array([0, 0, 1, 2, 1, 0]) y_label = torch.tensor([0, 0, 1, 2, 2, 2]) y_score = [ [0.7, 0.0, 0.3], [0.5, 0.2, 0.3], [0.4, 0.5, 0.1], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], ] # Test with score res = SingleLabelMetric.calculate(y_score, y_true, thrs=(0.6, )) self.assertIsInstance(res, list) self.assertIsInstance(res[0], tuple) precision, recall, f1_score, support = res[0] self.assertTensorEqual(precision, (1 + 0 + 1 / 3) / 3 * 100) self.assertTensorEqual(recall, (1 / 3 + 0 + 1) / 3 * 100) self.assertTensorEqual(f1_score, (1 / 2 + 0 + 1 / 2) / 3 * 100) self.assertTensorEqual(support, 6) # Test with label res = SingleLabelMetric.calculate(y_label, y_true, num_classes=3) self.assertIsInstance(res, tuple) precision, recall, f1_score, support = res # Expected values come from sklearn self.assertTensorEqual(precision, 77.7777) self.assertTensorEqual(recall, 72.2222) self.assertTensorEqual(f1_score, 65.5555) self.assertTensorEqual(support, 6) # Test with invalid inputs with self.assertRaisesRegex(TypeError, " is not"): SingleLabelMetric.calculate(y_label, 'hi') def assertTensorEqual(self, tensor: torch.Tensor, value: float, msg=None, **kwarg): tensor = tensor.to(torch.float32) value = torch.tensor(value).float() try: torch.testing.assert_allclose(tensor, value, **kwarg) except AssertionError as e: self.fail(self._formatMessage(msg, str(e))) class TestConfusionMatrix(TestCase): def test_evaluate(self): """Test using the metric in the same way as Evalutor.""" pred = [ DataSample().set_pred_score(i).set_pred_label(j).set_gt_label( k).to_dict() for i, j, k in zip([ torch.tensor([0.7, 0.0, 0.3]), torch.tensor([0.5, 0.2, 0.3]), torch.tensor([0.4, 0.5, 0.1]), torch.tensor([0.0, 0.0, 1.0]), torch.tensor([0.0, 0.0, 1.0]), torch.tensor([0.0, 0.0, 1.0]), ], [0, 0, 1, 2, 2, 2], [0, 0, 1, 2, 1, 0]) ] # Test with score (use score instead of label if score exists) metric = METRICS.build(dict(type='ConfusionMatrix')) metric.process(None, pred) res = metric.evaluate(6) self.assertIsInstance(res, dict) self.assertTensorEqual( res['confusion_matrix/result'], torch.tensor([ [2, 0, 1], [0, 1, 1], [0, 0, 1], ])) # Test with label for sample in pred: del sample['pred_score'] metric = METRICS.build(dict(type='ConfusionMatrix')) metric.process(None, pred) with self.assertRaisesRegex(AssertionError, 'Please specify the `num_classes`'): metric.evaluate(6) metric = METRICS.build(dict(type='ConfusionMatrix', num_classes=3)) metric.process(None, pred) self.assertIsInstance(res, dict) self.assertTensorEqual( res['confusion_matrix/result'], torch.tensor([ [2, 0, 1], [0, 1, 1], [0, 0, 1], ])) def test_calculate(self): y_true = np.array([0, 0, 1, 2, 1, 0]) y_label = torch.tensor([0, 0, 1, 2, 2, 2]) y_score = [ [0.7, 0.0, 0.3], [0.5, 0.2, 0.3], [0.4, 0.5, 0.1], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], ] # Test with score cm = ConfusionMatrix.calculate(y_score, y_true) self.assertIsInstance(cm, torch.Tensor) self.assertTensorEqual( cm, torch.tensor([ [2, 0, 1], [0, 1, 1], [0, 0, 1], ])) # Test with label with self.assertRaisesRegex(AssertionError, 'Please specify the `num_classes`'): ConfusionMatrix.calculate(y_label, y_true) cm = ConfusionMatrix.calculate(y_label, y_true, num_classes=3) self.assertIsInstance(cm, torch.Tensor) self.assertTensorEqual( cm, torch.tensor([ [2, 0, 1], [0, 1, 1], [0, 0, 1], ])) # Test with invalid inputs with self.assertRaisesRegex(TypeError, " is not"): ConfusionMatrix.calculate(y_label, 'hi') def test_plot(self): import matplotlib.pyplot as plt cm = torch.tensor([[2, 0, 1], [0, 1, 1], [0, 0, 1]]) fig = ConfusionMatrix.plot(cm, include_values=True, show=False) self.assertIsInstance(fig, plt.Figure) def assertTensorEqual(self, tensor: torch.Tensor, value: float, msg=None, **kwarg): tensor = tensor.to(torch.float32) value = torch.tensor(value).float() try: torch.testing.assert_allclose(tensor, value, **kwarg) except AssertionError as e: self.fail(self._formatMessage(msg, str(e)))