# Copyright (c) OpenMMLab. All rights reserved. import argparse import tempfile import mmengine from mmengine.config import Config, DictAction from mmengine.evaluator import Evaluator from mmengine.runner import Runner from mmpretrain.evaluation import ConfusionMatrix from mmpretrain.registry import DATASETS from mmpretrain.utils import register_all_modules def parse_args(): parser = argparse.ArgumentParser( description='Eval a checkpoint and draw the confusion matrix.') parser.add_argument('config', help='test config file path') parser.add_argument( 'ckpt_or_result', type=str, help='The checkpoint file (.pth) or ' 'dumpped predictions pickle file (.pkl).') parser.add_argument('--out', help='the file to save the confusion matrix.') parser.add_argument( '--show', action='store_true', help='whether to display the metric result by matplotlib if supports.') parser.add_argument( '--show-path', type=str, help='Path to save the visualization image.') parser.add_argument( '--include-values', action='store_true', help='To draw the values in the figure.') parser.add_argument( '--cmap', type=str, default='viridis', help='The color map to use. Defaults to "viridis".') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def main(): args = parse_args() # register all modules in mmpretrain into the registries # do not init the default scope here because it will be init in the runner register_all_modules(init_default_scope=False) # load config cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) if args.ckpt_or_result.endswith('.pth'): # Set confusion matrix as the metric. cfg.test_evaluator = dict(type='ConfusionMatrix') cfg.load_from = str(args.ckpt_or_result) with tempfile.TemporaryDirectory() as tmpdir: cfg.work_dir = tmpdir runner = Runner.from_cfg(cfg) classes = runner.test_loop.dataloader.dataset.metainfo.get( 'classes') cm = runner.test()['confusion_matrix/result'] else: predictions = mmengine.load(args.ckpt_or_result) evaluator = Evaluator(ConfusionMatrix()) metrics = evaluator.offline_evaluate(predictions, None) cm = metrics['confusion_matrix/result'] try: # Try to build the dataset. dataset = DATASETS.build({ **cfg.test_dataloader.dataset, 'pipeline': [] }) classes = dataset.metainfo.get('classes') except Exception: classes = None if args.out is not None: mmengine.dump(cm, args.out) if args.show or args.show_path is not None: fig = ConfusionMatrix.plot( cm, show=args.show, classes=classes, include_values=args.include_values, cmap=args.cmap) if args.show_path is not None: fig.savefig(args.show_path) print(f'The confusion matrix is saved at {args.show_path}.') if __name__ == '__main__': main()