# Copyright (c) OpenMMLab. All rights reserved. import argparse from pathlib import Path import torch def convert_weights(weight): """Weight Converter. Converts the weights from timm to mmpretrain Args: weight (dict): weight dict from timm Returns: converted weight dict for mmpretrain """ result = dict() result['meta'] = dict() temp = dict() mapping = { 'stem': 'patch_embed', 'proj': 'projection', 'mlp_tokens.fc1': 'token_mix.layers.0.0', 'mlp_tokens.fc2': 'token_mix.layers.1', 'mlp_channels.fc1': 'channel_mix.layers.0.0', 'mlp_channels.fc2': 'channel_mix.layers.1', 'norm1': 'ln1', 'norm2': 'ln2', 'norm.': 'ln1.', 'blocks': 'layers' } for k, v in weight.items(): for mk, mv in mapping.items(): if mk in k: k = k.replace(mk, mv) if k.startswith('head.'): temp['head.fc.' + k[5:]] = v else: temp['backbone.' + k] = v result['state_dict'] = temp return result if __name__ == '__main__': parser = argparse.ArgumentParser(description='Convert model keys') parser.add_argument('src', help='src detectron model path') parser.add_argument('dst', help='save path') args = parser.parse_args() dst = Path(args.dst) if dst.suffix != '.pth': print('The path should contain the name of the pth format file.') exit(1) dst.parent.mkdir(parents=True, exist_ok=True) original_model = torch.load(args.src, map_location='cpu') converted_model = convert_weights(original_model) torch.save(converted_model, args.dst)