# Example Project This is an example README for community `projects/`. You can write your README in your own project. Here are some recommended parts of a README for others to understand and use your project, you can copy or modify them according to your project. ## Usage ### Setup Environment Please refer to [Get Started](https://mmpretrain.readthedocs.io/en/latest/get_started.html) to install MMPreTrain. At first, add the current folder to `PYTHONPATH`, so that Python can find your code. Run command in the current directory to add it. > Please run it every time after you opened a new shell. ```shell export PYTHONPATH=`pwd`:$PYTHONPATH ``` ### Data Preparation Prepare the ImageNet-2012 dataset according to the [instruction](https://mmpretrain.readthedocs.io/en/latest/user_guides/dataset_prepare.html#imagenet). ### Training commands **To train with single GPU:** ```bash mim train mmpretrain configs/examplenet_8xb32_in1k.py ``` **To train with multiple GPUs:** ```bash mim train mmpretrain configs/examplenet_8xb32_in1k.py --launcher pytorch --gpus 8 ``` **To train with multiple GPUs by slurm:** ```bash mim train mmpretrain configs/examplenet_8xb32_in1k.py --launcher slurm \ --gpus 16 --gpus-per-node 8 --partition $PARTITION ``` ### Testing commands **To test with single GPU:** ```bash mim test mmpretrain configs/examplenet_8xb32_in1k.py $CHECKPOINT ``` **To test with multiple GPUs:** ```bash mim test mmpretrain configs/examplenet_8xb32_in1k.py $CHECKPOINT --launcher pytorch --gpus 8 ``` **To test with multiple GPUs by slurm:** ```bash mim test mmpretrain configs/examplenet_8xb32_in1k.py $CHECKPOINT --launcher slurm \ --gpus 16 --gpus-per-node 8 --partition $PARTITION ``` ## Results | Model | Pretrain | Top-1 (%) | Top-5 (%) | Config | Download | | :----------------: | :----------: | :-------: | :-------: | :-------------------------------------: | :------------------------------------: | | ExampleNet-tiny | From scratch | 82.33 | 96.15 | [config](./mvitv2-tiny_8xb256_in1k.py) | [model](MODEL-LINK) \| [log](LOG-LINK) | | ExampleNet-small\* | From scratch | 83.63 | 96.51 | [config](./mvitv2-small_8xb256_in1k.py) | [model](MODEL-LINK) | | ExampleNet-base\* | From scratch | 84.34 | 96.86 | [config](./mvitv2-base_8xb256_in1k.py) | [model](MODEL-LINK) | *Models with * are converted from the [official repo](REPO-LINK). The config files of these models are only for inference. We don't ensure these config files' training accuracy and welcome you to contribute your reproduction results.* ## Citation ```BibTeX @misc{2023mmpretrain, title={OpenMMLab's Pre-training Toolbox and Benchmark}, author={MMPreTrain Contributors}, howpublished = {\url{https://github.com/open-mmlab/mmpretrain}}, year={2023} } ``` ## Checklist Here is a checklist of this project's progress. And you can ignore this part if you don't plan to contribute to MMPreTrain projects. - [ ] Milestone 1: PR-ready, and acceptable to be one of the `projects/`. - [ ] Finish the code - [ ] Basic docstrings & proper citation - [ ] Converted checkpoint and results (Only for reproduction) - [ ] Milestone 2: Indicates a successful model implementation. - [ ] Training results - [ ] Milestone 3: Good to be a part of our core package! - [ ] Unit tests - [ ] Code style - [ ] `metafile.yml` and `README.md`