_base_ = [ '../_base_/datasets/imagenet_bs16_eva_336.py', '../_base_/schedules/imagenet_bs2048_AdamW.py', '../_base_/default_runtime.py' ] model = dict( type='ImageClassifier', backbone=dict( type='ViTEVA02', arch='t', img_size=336, patch_size=14, final_norm=False, out_type='avg_featmap'), neck=None, head=dict( type='LinearClsHead', num_classes=1000, in_channels=192, loss=dict( type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'), ), init_cfg=[ dict(type='TruncNormal', layer='Linear', std=.02), dict(type='Constant', layer='LayerNorm', val=1., bias=0.), ], train_cfg=dict(augments=[ dict(type='Mixup', alpha=0.8), dict(type='CutMix', alpha=1.0) ]))