# dataset settings dataset_type = 'VOC' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='RandomResizedCrop', size=224), dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='ToTensor', keys=['gt_label']), dict(type='Collect', keys=['img', 'gt_label']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', size=(256, -1)), dict(type='CenterCrop', crop_size=224), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ] data = dict( samples_per_gpu=16, workers_per_gpu=2, train=dict( type=dataset_type, data_prefix='data/VOCdevkit/VOC2007/', ann_file='data/VOCdevkit/VOC2007/ImageSets/Main/trainval.txt', pipeline=train_pipeline), val=dict( type=dataset_type, data_prefix='data/VOCdevkit/VOC2007/', ann_file='data/VOCdevkit/VOC2007/ImageSets/Main/test.txt', pipeline=test_pipeline), test=dict( type=dataset_type, data_prefix='data/VOCdevkit/VOC2007/', ann_file='data/VOCdevkit/VOC2007/ImageSets/Main/test.txt', pipeline=test_pipeline)) evaluation = dict( interval=1, metric=['mAP', 'CP', 'OP', 'CR', 'OR', 'CF1', 'OF1'])