_base_ = [ '../_base_/models/riformer/riformer_m48.py', '../_base_/datasets/imagenet_bs128_poolformer_medium_224.py', '../_base_/schedules/imagenet_bs1024_adamw_swin.py', '../_base_/default_runtime.py', ] # schedule settings optim_wrapper = dict( optimizer=dict(lr=4e-3), clip_grad=dict(max_norm=5.0), ) # NOTE: `auto_scale_lr` is for automatically scaling LR # based on the actual training batch size. # base_batch_size = (32 GPUs) x (128 samples per GPU) auto_scale_lr = dict(base_batch_size=4096)