# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from torch.nn.modules import GroupNorm from torch.nn.modules.batchnorm import _BatchNorm from mmcls.models.backbones import MobileNetV3 from mmcls.models.utils import InvertedResidual def is_norm(modules): """Check if is one of the norms.""" if isinstance(modules, (GroupNorm, _BatchNorm)): return True return False def check_norm_state(modules, train_state): """Check if norm layer is in correct train state.""" for mod in modules: if isinstance(mod, _BatchNorm): if mod.training != train_state: return False return True def test_mobilenetv3_backbone(): with pytest.raises(TypeError): # pretrained must be a string path model = MobileNetV3() model.init_weights(pretrained=0) with pytest.raises(AssertionError): # arch must in [small, large] MobileNetV3(arch='others') with pytest.raises(ValueError): # frozen_stages must less than 13 when arch is small MobileNetV3(arch='small', frozen_stages=13) with pytest.raises(ValueError): # frozen_stages must less than 17 when arch is large MobileNetV3(arch='large', frozen_stages=17) with pytest.raises(ValueError): # max out_indices must less than 13 when arch is small MobileNetV3(arch='small', out_indices=(13, )) with pytest.raises(ValueError): # max out_indices must less than 17 when arch is large MobileNetV3(arch='large', out_indices=(17, )) # Test MobileNetV3 model = MobileNetV3() model.init_weights() model.train() # Test MobileNetV3 with first stage frozen frozen_stages = 1 model = MobileNetV3(frozen_stages=frozen_stages) model.init_weights() model.train() for i in range(0, frozen_stages + 1): layer = getattr(model, f'layer{i}') for mod in layer.modules(): if isinstance(mod, _BatchNorm): assert mod.training is False for param in layer.parameters(): assert param.requires_grad is False # Test MobileNetV3 with norm eval model = MobileNetV3(norm_eval=True, out_indices=range(0, 12)) model.init_weights() model.train() assert check_norm_state(model.modules(), False) # Test MobileNetV3 forward with small arch model = MobileNetV3(out_indices=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 13 assert feat[0].shape == torch.Size([1, 16, 112, 112]) assert feat[1].shape == torch.Size([1, 16, 56, 56]) assert feat[2].shape == torch.Size([1, 24, 28, 28]) assert feat[3].shape == torch.Size([1, 24, 28, 28]) assert feat[4].shape == torch.Size([1, 40, 14, 14]) assert feat[5].shape == torch.Size([1, 40, 14, 14]) assert feat[6].shape == torch.Size([1, 40, 14, 14]) assert feat[7].shape == torch.Size([1, 48, 14, 14]) assert feat[8].shape == torch.Size([1, 48, 14, 14]) assert feat[9].shape == torch.Size([1, 96, 7, 7]) assert feat[10].shape == torch.Size([1, 96, 7, 7]) assert feat[11].shape == torch.Size([1, 96, 7, 7]) assert feat[12].shape == torch.Size([1, 576, 7, 7]) # Test MobileNetV3 forward with small arch and GroupNorm model = MobileNetV3( out_indices=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), norm_cfg=dict(type='GN', num_groups=2, requires_grad=True)) for m in model.modules(): if is_norm(m): assert isinstance(m, GroupNorm) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 13 assert feat[0].shape == torch.Size([1, 16, 112, 112]) assert feat[1].shape == torch.Size([1, 16, 56, 56]) assert feat[2].shape == torch.Size([1, 24, 28, 28]) assert feat[3].shape == torch.Size([1, 24, 28, 28]) assert feat[4].shape == torch.Size([1, 40, 14, 14]) assert feat[5].shape == torch.Size([1, 40, 14, 14]) assert feat[6].shape == torch.Size([1, 40, 14, 14]) assert feat[7].shape == torch.Size([1, 48, 14, 14]) assert feat[8].shape == torch.Size([1, 48, 14, 14]) assert feat[9].shape == torch.Size([1, 96, 7, 7]) assert feat[10].shape == torch.Size([1, 96, 7, 7]) assert feat[11].shape == torch.Size([1, 96, 7, 7]) assert feat[12].shape == torch.Size([1, 576, 7, 7]) # Test MobileNetV3 forward with large arch model = MobileNetV3( arch='large', out_indices=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 17 assert feat[0].shape == torch.Size([1, 16, 112, 112]) assert feat[1].shape == torch.Size([1, 16, 112, 112]) assert feat[2].shape == torch.Size([1, 24, 56, 56]) assert feat[3].shape == torch.Size([1, 24, 56, 56]) assert feat[4].shape == torch.Size([1, 40, 28, 28]) assert feat[5].shape == torch.Size([1, 40, 28, 28]) assert feat[6].shape == torch.Size([1, 40, 28, 28]) assert feat[7].shape == torch.Size([1, 80, 14, 14]) assert feat[8].shape == torch.Size([1, 80, 14, 14]) assert feat[9].shape == torch.Size([1, 80, 14, 14]) assert feat[10].shape == torch.Size([1, 80, 14, 14]) assert feat[11].shape == torch.Size([1, 112, 14, 14]) assert feat[12].shape == torch.Size([1, 112, 14, 14]) assert feat[13].shape == torch.Size([1, 160, 7, 7]) assert feat[14].shape == torch.Size([1, 160, 7, 7]) assert feat[15].shape == torch.Size([1, 160, 7, 7]) assert feat[16].shape == torch.Size([1, 960, 7, 7]) # Test MobileNetV3 forward with large arch model = MobileNetV3(arch='large', out_indices=(0, )) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 1 assert feat[0].shape == torch.Size([1, 16, 112, 112]) # Test MobileNetV3 with checkpoint forward model = MobileNetV3(with_cp=True) for m in model.modules(): if isinstance(m, InvertedResidual): assert m.with_cp model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 1 assert feat[0].shape == torch.Size([1, 576, 7, 7])