_base_ = [ '../../_base_/datasets/imagenet_bs64_swin_224.py', '../../_base_/schedules/imagenet_bs1024_adamw_swin.py', '../../_base_/default_runtime.py' ] model = dict( type='ImageClassifier', backbone=dict( type='BEiTViT', arch='base', img_size=224, patch_size=16, out_type='avg_featmap', use_abs_pos_emb=False, use_rel_pos_bias=True, use_shared_rel_pos_bias=False, ), neck=None, head=dict( type='LinearClsHead', num_classes=1000, in_channels=768, loss=dict( type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'), ), init_cfg=[ dict(type='TruncNormal', layer='Linear', std=.02), dict(type='Constant', layer='LayerNorm', val=1., bias=0.), ], train_cfg=dict(augments=[ dict(type='Mixup', alpha=0.8), dict(type='CutMix', alpha=1.0) ]))