# model settings model = dict( type='ImageClassifier', backbone=dict( type='Conformer', arch='small', patch_size=32, drop_path_rate=0.1, init_cfg=None), neck=None, head=dict( type='ConformerHead', num_classes=1000, in_channels=[1024, 384], init_cfg=None, loss=dict( type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'), cal_acc=False), init_cfg=[ dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.), dict(type='Constant', layer='LayerNorm', val=1., bias=0.) ], train_cfg=dict(augments=[ dict(type='BatchMixup', alpha=0.8, num_classes=1000, prob=0.5), dict(type='BatchCutMix', alpha=1.0, num_classes=1000, prob=0.5) ]))