# Refer to pytorch-image-models _base_ = [ '../_base_/models/vit-large-p32.py', '../_base_/datasets/imagenet_bs64_pil_resize_autoaug.py', '../_base_/schedules/imagenet_bs4096_AdamW.py', '../_base_/default_runtime.py' ] model = dict(backbone=dict(img_size=384)) img_norm_cfg = dict( mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='RandomResizedCrop', size=384, backend='pillow'), dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='ToTensor', keys=['gt_label']), dict(type='Collect', keys=['img', 'gt_label']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', size=(384, -1), backend='pillow'), dict(type='CenterCrop', crop_size=384), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline), )