_base_ = [ '../_base_/models/repmlp-base_224.py', '../_base_/datasets/imagenet_bs64_pil_resize.py', '../_base_/schedules/imagenet_bs1024_adamw_swin.py', '../_base_/default_runtime.py' ] # dataset settings test_pipeline = [ dict(type='LoadImageFromFile'), # resizing to (256, 256) here, different from resizing shorter edge to 256 dict(type='Resize', scale=(256, 256), backend='pillow'), dict(type='CenterCrop', crop_size=224), dict(type='PackClsInputs'), ] val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = dict(dataset=dict(pipeline=test_pipeline)) # schedule settings optim_wrapper = dict(clip_grad=dict(max_norm=5.0)) # NOTE: `auto_scale_lr` is for automatically scaling LR # based on the actual training batch size. # base_batch_size = (8 GPUs) x (64 samples per GPU) auto_scale_lr = dict(base_batch_size=512)