model = dict( type='ImageClassifier', backbone=dict( type='RepVGG', arch='B3', out_indices=(3, ), ), neck=dict(type='GlobalAveragePooling'), head=dict( type='LinearClsHead', num_classes=1000, in_channels=2560, loss=dict( type='LabelSmoothLoss', loss_weight=1.0, label_smooth_val=0.1, mode='classy_vision', num_classes=1000), topk=(1, 5), ), train_cfg=dict(augments=dict(type='Mixup', alpha=0.2)), )