# optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001)) # learning policy param_scheduler = dict( type='CosineAnnealingLR', T_max=100, by_epoch=True, begin=0, end=100) # train, val, test setting train_cfg = dict(by_epoch=True, max_epochs=100, val_interval=1) val_cfg = dict() test_cfg = dict() # NOTE: `auto_scale_lr` is for automatically scaling LR, # based on the actual training batch size. auto_scale_lr = dict(base_batch_size=256)