_base_ = [ '../../_base_/datasets/imagenet_bs64_swin_224.py', '../../_base_/schedules/imagenet_bs1024_adamw_swin.py', '../../_base_/default_runtime.py' ] # model settings model = dict( type='ImageClassifier', backbone=dict( type='BEiTViT', arch='base', img_size=224, patch_size=16, # 0.2 for 1600 epochs pretrained models and 0.1 for 300 epochs. drop_path_rate=0.1, out_type='avg_featmap', use_abs_pos_emb=False, use_rel_pos_bias=True, use_shared_rel_pos_bias=False), neck=None, head=dict( type='LinearClsHead', num_classes=1000, in_channels=768, loss=dict( type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'), init_cfg=[dict(type='TruncNormal', layer='Linear', std=0.02)]), train_cfg=dict(augments=[ dict(type='Mixup', alpha=0.8), dict(type='CutMix', alpha=1.0) ])) train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='RandomResizedCrop', scale=224, backend='pillow', interpolation='bicubic'), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict( type='RandAugment', policies='timm_increasing', num_policies=2, total_level=10, magnitude_level=9, magnitude_std=0.5, hparams=dict(pad_val=[104, 116, 124], interpolation='bicubic')), dict( type='RandomErasing', erase_prob=0.25, mode='rand', min_area_ratio=0.02, max_area_ratio=0.3333333333333333, fill_color=[103.53, 116.28, 123.675], fill_std=[57.375, 57.12, 58.395]), dict(type='PackInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='ResizeEdge', scale=256, edge='short', backend='pillow', interpolation='bicubic'), dict(type='CenterCrop', crop_size=224), dict(type='PackInputs') ] train_dataloader = dict(batch_size=128, dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(batch_size=128, dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # optimizer wrapper optim_wrapper = dict( optimizer=dict( type='AdamW', lr=5e-4, weight_decay=0.05, betas=(0.9, 0.999)), constructor='LearningRateDecayOptimWrapperConstructor', paramwise_cfg=dict( _delete_=True, # 0.6 for 1600 epochs pretrained models and 0.65 for 300 epochs layer_decay_rate=0.65, custom_keys={ # the following configurations are designed for BEiT '.ln': dict(decay_mult=0.0), '.bias': dict(decay_mult=0.0), 'q_bias': dict(decay_mult=0.0), 'v_bias': dict(decay_mult=0.0), '.cls_token': dict(decay_mult=0.0), '.pos_embed': dict(decay_mult=0.0), '.gamma': dict(decay_mult=0.0), })) # learning rate scheduler param_scheduler = [ dict( type='LinearLR', start_factor=1e-4, by_epoch=True, begin=0, end=20, convert_to_iter_based=True), dict( type='CosineAnnealingLR', by_epoch=True, begin=20, end=100, eta_min=1e-6, convert_to_iter_based=True) ] # runtime settings default_hooks = dict( # save checkpoint per epoch. checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=2)) train_cfg = dict(by_epoch=True, max_epochs=100) randomness = dict(seed=0)