_base_ = [ '../_base_/datasets/imagenet_bs32.py', '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py', ] # model settings model = dict( type='ImageClassifier', backbone=dict(type='CSPDarkNet', depth=53), neck=dict(type='GlobalAveragePooling'), head=dict( type='LinearClsHead', num_classes=1000, in_channels=1024, loss=dict(type='CrossEntropyLoss', loss_weight=1.0), )) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='RandomResizedCrop', scale=224, backend='pillow', interpolation='bicubic'), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict(type='PackInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='ResizeEdge', scale=288, edge='short', backend='pillow', interpolation='bicubic'), dict(type='CenterCrop', crop_size=256), dict(type='PackInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = dict(dataset=dict(pipeline=test_pipeline))