_base_ = ['./efficientnetv2-b0_8xb32_in1k.py'] # model setting model = dict(backbone=dict(arch='b3'), head=dict(in_channels=1536, )) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='EfficientNetRandomCrop', scale=240), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict(type='PackInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='EfficientNetCenterCrop', crop_size=300, crop_padding=0), dict(type='PackInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = dict(dataset=dict(pipeline=test_pipeline))