_base_ = [ '../../_base_/models/mixmim/mixmim_base.py', '../../_base_/datasets/imagenet_bs64_swin_224.py', '../../_base_/default_runtime.py' ] # dataset settings dataset_type = 'ImageNet' data_root = 'data/imagenet/' data_preprocessor = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True, ) bgr_mean = data_preprocessor['mean'][::-1] bgr_std = data_preprocessor['std'][::-1] train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='RandomResizedCrop', scale=224, backend='pillow', interpolation='bicubic'), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict( type='RandAugment', policies='timm_increasing', num_policies=2, total_level=10, magnitude_level=9, magnitude_std=0.5, hparams=dict( pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')), dict( type='RandomErasing', erase_prob=0.25, mode='rand', min_area_ratio=0.02, max_area_ratio=1 / 3, fill_color=bgr_mean, fill_std=bgr_std), dict(type='PackInputs'), ] train_dataloader = dict( batch_size=128, num_workers=16, dataset=dict( type=dataset_type, data_root=data_root, ann_file='meta/train.txt', data_prefix='train', pipeline=train_pipeline), sampler=dict(type='DefaultSampler', shuffle=True), persistent_workers=True, ) test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='ResizeEdge', scale=256, edge='short', backend='pillow', interpolation='bicubic'), dict(type='CenterCrop', crop_size=224), dict(type='PackInputs'), ] val_dataloader = dict( batch_size=64, num_workers=8, pin_memory=True, collate_fn=dict(type='default_collate'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='meta/val.txt', data_prefix='val', pipeline=test_pipeline), sampler=dict(type='DefaultSampler', shuffle=False), persistent_workers=True, ) test_dataloader = val_dataloader # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict( type='AdamW', lr=5e-4 * (8 * 128 / 256), betas=(0.9, 0.999), weight_decay=0.05), constructor='LearningRateDecayOptimWrapperConstructor', paramwise_cfg=dict( layer_decay_rate=0.7, custom_keys={ '.ln': dict(decay_mult=0.0), # do not decay on ln and bias '.bias': dict(decay_mult=0.0) })) param_scheduler = [ dict( type='LinearLR', start_factor=1e-6, by_epoch=True, begin=0, end=5, convert_to_iter_based=True), dict( type='CosineAnnealingLR', T_max=95, eta_min=1e-6, by_epoch=True, begin=5, end=100, convert_to_iter_based=True) ] train_cfg = dict(by_epoch=True, max_epochs=100, val_interval=10) val_cfg = dict() test_cfg = dict() default_hooks = dict( # save checkpoint per epoch. checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=1))