Collections: - Name: MixMIM Metadata: Architecture: - Attention Dropout - Convolution - Dense Connections - Dropout - GELU - Layer Normalization - Multi-Head Attention - Scaled Dot-Product Attention - Tanh Activation Paper: Title: 'MixMIM: Mixed and Masked Image Modeling for Efficient Visual Representation Learning' URL: https://arxiv.org/abs/2205.13137 README: configs/mixmim/README.md Code: URL: https://github.com/open-mmlab/mmpretrain/blob/main/mmpretrain/models/backbones/mixmim.py Version: v1.0.0rc4 Models: - Name: mixmim_mixmim-base_16xb128-coslr-300e_in1k Metadata: Epochs: 300 Batch Size: 2048 FLOPs: 16351906816 Parameters: 114665784 Training Data: ImageNet-1k In Collection: MixMIM Results: null Weights: https://download.openmmlab.com/mmselfsup/1.x/mixmim/mixmim-base-p16_16xb128-coslr-300e_in1k/mixmim-base-p16_16xb128-coslr-300e_in1k_20221208-44fe8d2c.pth Config: configs/mixmim/mixmim_mixmim-base_16xb128-coslr-300e_in1k.py Downstream: - mixmim-base_mixmim-pre_8xb128-coslr-100e_in1k - Name: mixmim-base_mixmim-pre_8xb128-coslr-100e_in1k Metadata: Epochs: 100 Batch Size: 1024 FLOPs: 16351906816 Parameters: 88344352 Training Data: ImageNet-1k In Collection: MixMIM Results: - Task: Image Classification Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 84.63 Weights: https://download.openmmlab.com/mmselfsup/1.x/mixmim/mixmim-base-p16_16xb128-coslr-300e_in1k/mixmim-base-p16_ft-8xb128-coslr-100e_in1k/mixmim-base-p16_ft-8xb128-coslr-100e_in1k_20221208-41ecada9.pth Config: configs/mixmim/benchmarks/mixmim-base_8xb128-coslr-100e_in1k.py