# Refers to https://pytorch.org/blog/ml-models-torchvision-v0.9/#classification _base_ = [ '../_base_/models/mobilenet_v3/mobilenet_v3_large_imagenet.py', '../_base_/datasets/imagenet_bs128_mbv3.py', '../_base_/default_runtime.py', ] # schedule settings optim_wrapper = dict( optimizer=dict( type='RMSprop', lr=0.064, alpha=0.9, momentum=0.9, eps=0.0316, weight_decay=1e-5)) param_scheduler = dict(type='StepLR', by_epoch=True, step_size=2, gamma=0.973) train_cfg = dict(by_epoch=True, max_epochs=600, val_interval=1) val_cfg = dict() test_cfg = dict() # NOTE: `auto_scale_lr` is for automatically scaling LR # based on the actual training batch size. # base_batch_size = (8 GPUs) x (128 samples per GPU) auto_scale_lr = dict(base_batch_size=1024)