_base_ = ['./regnetx-400mf_8xb128_in1k.py'] # model settings model = dict( backbone=dict(type='RegNet', arch='regnetx_3.2gf'), head=dict(in_channels=1008, )) # dataset settings train_dataloader = dict(batch_size=64) # schedule settings # for batch_size 512, use lr = 0.4 optim_wrapper = dict(optimizer=dict(lr=0.4)) # NOTE: `auto_scale_lr` is for automatically scaling LR # based on the actual training batch size. # base_batch_size = (8 GPUs) x (64 samples per GPU) auto_scale_lr = dict(base_batch_size=512)