_base_ = [ '../_base_/models/repmlp-base_224.py', '../_base_/datasets/imagenet_bs64_pil_resize.py', '../_base_/schedules/imagenet_bs4096_AdamW.py', '../_base_/default_runtime.py' ] # model settings model = dict(backbone=dict(img_size=256)) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='RandomResizedCrop', scale=256), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict(type='PackInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='ResizeEdge', scale=292, edge='short', backend='pillow'), dict(type='CenterCrop', crop_size=256), dict(type='PackInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = dict(dataset=dict(pipeline=test_pipeline)) # schedule settings optim_wrapper = dict(clip_grad=dict(max_norm=1.0)) # NOTE: `auto_scale_lr` is for automatically scaling LR # based on the actual training batch size. # base_batch_size = (8 GPUs) x (64 samples per GPU) auto_scale_lr = dict(base_batch_size=512)