Collections: - Name: Vision Transformer Metadata: Architecture: - Attention Dropout - Convolution - Dense Connections - Dropout - GELU - Layer Normalization - Multi-Head Attention - Scaled Dot-Product Attention - Tanh Activation Paper: Title: 'An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale' URL: https://arxiv.org/abs/2010.11929 README: configs/vision_transformer/README.md Code: URL: https://github.com/open-mmlab/mmpretrain/blob/v0.17.0/mmcls/models/backbones/vision_transformer.py Version: v0.17.0 Models: - Name: vit-base-p32_in21k-pre_3rdparty_in1k-384px Metadata: FLOPs: 13056716544 Parameters: 88297192 Training Data: - ImageNet-21k - ImageNet-1k In Collection: Vision Transformer Results: - Dataset: ImageNet-1k Task: Image Classification Metrics: Top 1 Accuracy: 84.01 Top 5 Accuracy: 97.08 Weights: https://download.openmmlab.com/mmclassification/v0/vit/finetune/vit-base-p32_in21k-pre-3rdparty_ft-64xb64_in1k-384_20210928-9cea8599.pth Config: configs/vision_transformer/vit-base-p32_64xb64_in1k-384px.py Converted From: Weights: https://console.cloud.google.com/storage/browser/_details/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_light1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz Code: https://github.com/google-research/vision_transformer/blob/88a52f8892c80c10de99194990a517b4d80485fd/vit_jax/models.py#L208 - Name: vit-base-p16_32xb128-mae_in1k Metadata: FLOPs: 17581972224 Parameters: 86567656 Training Data: - ImageNet-1k In Collection: Vision Transformer Results: - Dataset: ImageNet-1k Task: Image Classification Metrics: Top 1 Accuracy: 82.37 Top 5 Accuracy: 96.15 Weights: https://download.openmmlab.com/mmclassification/v0/vit/vit-base-p16_pt-32xb128-mae_in1k_20220623-4c544545.pth Config: configs/vision_transformer/vit-base-p16_32xb128-mae_in1k.py - Name: vit-base-p16_in21k-pre_3rdparty_in1k-384px Metadata: FLOPs: 55538974464 Parameters: 86859496 Training Data: - ImageNet-21k - ImageNet-1k In Collection: Vision Transformer Results: - Dataset: ImageNet-1k Task: Image Classification Metrics: Top 1 Accuracy: 85.43 Top 5 Accuracy: 97.77 Weights: https://download.openmmlab.com/mmclassification/v0/vit/finetune/vit-base-p16_in21k-pre-3rdparty_ft-64xb64_in1k-384_20210928-98e8652b.pth Config: configs/vision_transformer/vit-base-p16_64xb64_in1k-384px.py Converted From: Weights: https://console.cloud.google.com/storage/browser/_details/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz Code: https://github.com/google-research/vision_transformer/blob/88a52f8892c80c10de99194990a517b4d80485fd/vit_jax/models.py#L208 - Name: vit-large-p16_in21k-pre_3rdparty_in1k-384px Metadata: FLOPs: 191210034176 Parameters: 304715752 Training Data: - ImageNet-21k - ImageNet-1k In Collection: Vision Transformer Results: - Dataset: ImageNet-1k Task: Image Classification Metrics: Top 1 Accuracy: 85.63 Top 5 Accuracy: 97.63 Weights: https://download.openmmlab.com/mmclassification/v0/vit/finetune/vit-large-p16_in21k-pre-3rdparty_ft-64xb64_in1k-384_20210928-b20ba619.pth Config: configs/vision_transformer/vit-large-p16_64xb64_in1k-384px.py Converted From: Weights: https://console.cloud.google.com/storage/browser/_details/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_strong1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz Code: https://github.com/google-research/vision_transformer/blob/88a52f8892c80c10de99194990a517b4d80485fd/vit_jax/models.py#L208