_base_ = [ '../_base_/models/efficientnet_v2/efficientnetv2_s.py', '../_base_/datasets/imagenet_bs32.py', '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py', ] # model setting model = dict(head=dict(num_classes=21843)) # dataset settings dataset_type = 'ImageNet21k' data_preprocessor = dict( num_classes=21843, # RGB format normalization parameters mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], # convert image from BGR to RGB to_rgb=True, ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='EfficientNetRandomCrop', scale=224), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict(type='PackInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='EfficientNetCenterCrop', crop_size=224, crop_padding=0), dict(type='PackInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = dict(dataset=dict(pipeline=test_pipeline)) # schedule setting optim_wrapper = dict( optimizer=dict(lr=4e-3), clip_grad=dict(max_norm=5.0), )