Collections: - Name: MaskFeat Metadata: Training Data: ImageNet-1k Training Techniques: - AdamW Training Resources: 8x A100-80G GPUs Architecture: - ViT Paper: Title: Masked Feature Prediction for Self-Supervised Visual Pre-Training URL: https://arxiv.org/abs/2112.09133v1 README: configs/maskfeat/README.md Models: - Name: maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k Metadata: Epochs: 300 Batch Size: 2048 FLOPs: 17581972224 Parameters: 85882692 Training Data: ImageNet-1k In Collection: MaskFeat Results: null Weights: https://download.openmmlab.com/mmselfsup/1.x/maskfeat/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221101-6dfc8bf3.pth Config: configs/maskfeat/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k.py Downstream: - vit-base-p16_maskfeat-pre_8xb256-coslr-100e_in1k - Name: vit-base-p16_maskfeat-pre_8xb256-coslr-100e_in1k Metadata: Epochs: 100 Batch Size: 2048 FLOPs: 17581215744 Parameters: 86566120 Training Data: ImageNet-1k In Collection: MaskFeat Results: - Task: Image Classification Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 83.4 Weights: https://download.openmmlab.com/mmselfsup/1.x/maskfeat/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb256-coslr-100e_in1k/vit-base-p16_ft-8xb256-coslr-100e_in1k_20221028-5134431c.pth Config: configs/maskfeat/benchmarks/vit-base-p16_8xb256-coslr-100e_in1k.py