Collections: - Name: Shufflenet V1 Metadata: Training Data: ImageNet-1k Training Techniques: - SGD with Momentum - Weight Decay - No BN decay Training Resources: 8x 1080 GPUs Epochs: 300 Batch Size: 1024 Architecture: - Shufflenet V1 Paper: URL: https://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_ShuffleNet_An_Extremely_CVPR_2018_paper.html Title: "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices" README: configs/shufflenet_v1/README.md Code: URL: https://github.com/open-mmlab/mmclassification/blob/v0.15.0/mmcls/models/backbones/shufflenet_v1.py#L152 Version: v0.15.0 Models: - Name: shufflenet-v1-1x_16xb64_in1k Metadata: FLOPs: 146000000 Parameters: 1870000 In Collection: Shufflenet V1 Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 68.13 Top 5 Accuracy: 87.81 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/shufflenet_v1/shufflenet_v1_batch1024_imagenet_20200804-5d6cec73.pth Config: configs/shufflenet_v1/shufflenet-v1-1x_16xb64_in1k.py