#!/usr/bin/env python import re import warnings from collections import defaultdict from pathlib import Path from modelindex.load_model_index import load from modelindex.models.Result import Result from tabulate import tabulate MMPT_ROOT = Path(__file__).absolute().parents[2] PAPERS_ROOT = Path('papers') # Path to save generated paper pages. GITHUB_PREFIX = 'https://github.com/open-mmlab/mmpretrain/blob/main/' MODELZOO_TEMPLATE = """\ # 模型库统计 在本页面中,我们列举了我们支持的[所有算法](#所有已支持的算法)。你可以点击链接跳转至对应的模型详情页面。 另外,我们还列出了我们提供的所有模型权重文件。你可以使用排序和搜索功能找到需要的模型权重,并使用链接跳转至模型详情页面。 ## 所有已支持的算法 * 论文数量:{num_papers} {type_msg} * 模型权重文件数量:{num_ckpts} {paper_msg} """ # noqa: E501 METRIC_ALIAS = { 'Top 1 Accuracy': 'Top-1 (%)', 'Top 5 Accuracy': 'Top-5 (%)', } model_index = load(str(MMPT_ROOT / 'model-index.yml')) def build_collections(model_index): col_by_name = {} for col in model_index.collections: setattr(col, 'models', []) col_by_name[col.name] = col for model in model_index.models: col = col_by_name[model.in_collection] col.models.append(model) setattr(model, 'collection', col) if model.results is None: setattr(model, 'tasks', []) else: setattr(model, 'tasks', [result.task for result in model.results]) build_collections(model_index) def count_papers(collections): total_num_ckpts = 0 type_count = defaultdict(int) paper_msgs = [] for collection in collections: with open(MMPT_ROOT / collection.readme) as f: readme = f.read() ckpts = set(x.lower().strip() for x in re.findall(r'\[model\]\((https?.*)\)', readme)) total_num_ckpts += len(ckpts) title = collection.paper['Title'] papertype = collection.data.get('type', 'Algorithm') type_count[papertype] += 1 readme = PAPERS_ROOT / Path( collection.filepath).parent.with_suffix('.md').name paper_msgs.append( f'\t- [{papertype}] [{title}]({readme}) ({len(ckpts)} ckpts)') type_msg = '\n'.join( [f'\t- {type_}: {count}' for type_, count in type_count.items()]) paper_msg = '\n'.join(paper_msgs) modelzoo = MODELZOO_TEMPLATE.format( num_papers=len(collections), num_ckpts=total_num_ckpts, type_msg=type_msg, paper_msg=paper_msg, ) with open('modelzoo_statistics.md', 'w') as f: f.write(modelzoo) count_papers(model_index.collections) def generate_paper_page(collection): PAPERS_ROOT.mkdir(exist_ok=True) # Write a copy of README with open(MMPT_ROOT / collection.readme) as f: readme = f.read() folder = Path(collection.filepath).parent copy = PAPERS_ROOT / folder.with_suffix('.md').name def replace_link(matchobj): # Replace relative link to GitHub link. name = matchobj.group(1) link = matchobj.group(2) if not link.startswith('http'): assert (folder / link).exists(), \ f'Link not found:\n{collection.readme}: {link}' rel_link = (folder / link).absolute().relative_to(MMPT_ROOT) link = GITHUB_PREFIX + str(rel_link) return f'[{name}]({link})' content = re.sub(r'\[([^\]]+)\]\(([^)]+)\)', replace_link, readme) content = f'---\ngithub_page: /{collection.readme}\n---\n' + content def make_tabs(matchobj): """modify the format from emphasis black symbol to tabs.""" content = matchobj.group() content = content.replace('', '') content = content.replace('', '') # split the content by "**{Tab-Name}**"" splits = re.split(r'^\*\*(.*)\*\*$', content, flags=re.M)[1:] tabs_list = [] for title, tab_content in zip(splits[::2], splits[1::2]): title = ':::{tab} ' + title + '\n' tab_content = tab_content.strip() + '\n:::\n' tabs_list.append(title + tab_content) return '::::{tabs}\n' + ''.join(tabs_list) + '::::' if '' in content and '' in content: # Make TABS block a selctive tabs try: pattern = r'([\d\D]*?)' content = re.sub(pattern, make_tabs, content) except Exception as e: warnings.warn(f'Can not parse the TABS, get an error : {e}') with open(copy, 'w') as copy_file: copy_file.write(content) for collection in model_index.collections: generate_paper_page(collection) def scatter_results(models): model_result_pairs = [] for model in models: if model.results is None: result = Result(task=None, dataset=None, metrics={}) model_result_pairs.append((model, result)) else: for result in model.results: model_result_pairs.append((model, result)) return model_result_pairs def generate_summary_table(task, model_result_pairs, title=None): metrics = set() for model, result in model_result_pairs: if result.task == task: metrics = metrics.union(result.metrics.keys()) metrics = sorted(list(metrics)) rows = [] for model, result in model_result_pairs: if result.task != task: continue name = model.name params = f'{model.metadata.parameters / 1e6:.2f}' # Params flops = f'{model.metadata.flops / 1e9:.2f}' # Params readme = Path(model.collection.filepath).parent.with_suffix('.md').name page = f'[链接]({PAPERS_ROOT / readme})' model_metrics = [] for metric in metrics: model_metrics.append(str(result.metrics.get(metric, ''))) rows.append([name, params, flops, *model_metrics, page]) with open('modelzoo_statistics.md', 'a') as f: if title is not None: f.write(f'\n{title}') f.write("""\n```{table}\n:class: model-summary\n""") header = [ '模型', '参数量 (M)', 'Flops (G)', *[METRIC_ALIAS.get(metric, metric) for metric in metrics], 'Readme', ] table_cfg = dict( tablefmt='pipe', floatfmt='.2f', numalign='right', stralign='center') f.write(tabulate(rows, header, **table_cfg)) f.write('\n```\n') def generate_dataset_wise_table(task, model_result_pairs, title=None): dataset_rows = defaultdict(list) for model, result in model_result_pairs: if result.task == task: dataset_rows[result.dataset].append((model, result)) if title is not None: with open('modelzoo_statistics.md', 'a') as f: f.write(f'\n{title}') for dataset, pairs in dataset_rows.items(): generate_summary_table(task, pairs, title=f'### {dataset}') model_result_pairs = scatter_results(model_index.models) # Generate Pretrain Summary generate_summary_table( task=None, model_result_pairs=model_result_pairs, title='## 预训练模型', ) # Generate Image Classification Summary generate_dataset_wise_table( task='Image Classification', model_result_pairs=model_result_pairs, title='## 图像分类', ) # Generate Multi-Label Classification Summary generate_dataset_wise_table( task='Multi-Label Classification', model_result_pairs=model_result_pairs, title='## 图像多标签分类', ) # Generate Image Retrieval Summary generate_dataset_wise_table( task='Image Retrieval', model_result_pairs=model_result_pairs, title='## 图像检索', )